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ABSTRACT

A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nifio—
Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an
appropriate wavelet basis function, edge effects due to finite-length time series, and the relationship between wavelet
scale and Fourier frequency. New statistical significance tests for wavelet power spectra are developed by deriving theo-
retical wavelet spectra for white and red noise processes and using these to establish significance levels and confidence
intervals. It is shown that smoothing in time or scale can be used to increase the confidence of the wavelet spectrum.
Empirical formulas are given for the effect of smoothing on significance levels and confidence intervals. Extensions to
wavelet analysis such as filtering, the power Hovmoller, cross-wavelet spectra, and coherence are described.

The statistical significance tests are used to give a quantitative measure of changes in ENSO variance on interdecadal
timescales. Using new datasets that extend back to 1871, the Nifio3 sea surface temperature and the Southern Oscilla-
tion index show significantly higher power during 1880-1920 and 1960-90, and lower power during 1920-60, as well
as a possible 15-yr modulation of variance. The power Hovmdller of sea level pressure shows significant variations in
2-8-yr wavelet power in both longitude and time.

1. Introduction complete description of geophysical applications can
be found in Foufoula-Georgiou and Kumar (1995),
Wavelet analysis is becoming a common tool favhile a theoretical treatment of wavelet analysis is
analyzing localized variations of power within a timgiven in Daubechies (1992).
series. By decomposing a time series into time—fre-Unfortunately, many studies using wavelet analy-
guency space, one is able to determine both the dosis- have suffered from an apparent lack of quantita-
nant modes of variability and how those modes vatiye results. The wavelet transform has been regarded
in time. The wavelet transform has been used for my many as an interesting diversion that produces col-
merous studies in geophysics, including tropical coarful pictures, yet purely qualitative results. This mis-
vection (Weng and Lau 1994), the El Nifio—Southeoonception is in some sense the fault of wavelet analy-
Oscillation (ENSO; Gu and Philander 1995; Wang arsik itself, as it involves a transform from a one-dimen-
Wang 1996), atmospheric cold fronts (Gamage asitnal time series (or frequency spectrum) to a diffuse
Blumen 1993), central England temperature (Baliunago-dimensional time—frequency image. This diffuse-
etal. 1997), the dispersion of ocean waves (Meyersiess has been exacerbated by the use of arbitrary nor-
al. 1993), wave growth and breaking (Liu 1994), andalizations and the lack of statistical significance tests.
coherent structures in turbulent flows (Farge 1992). A In Lau and Weng (1995), an excellent introduction
to wavelet analysis is provided. Their paper, however,
EE— did not provide all of the essential details necessary
Corresponding author addres8r. Christopher Torrence, Ad- for wavelet analysis and avoided the issue of statisti-
vanced Study Program, National Center for Atmospheric Rgél significance.
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E-mail: torrence@ucar.edu The purpose of this paper is to provide an easy-to-
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ENSO provides a substantive addition to2 NNOS3 SsT
the ENSO literature. In particular, the ,1
statistical significance testing allowsg 17 || :
greater confidence in the previous wave-" 34 VWA Y
let-based ENSO results of Wang and | |
Wang (1996). The use of new datasets 1880 1900
with longer time series permits a more®
robust classification of interdecadal
changes in ENSO variance. _
The first section describes the dataset§
used for the examples. Section 3 deg
scribes the method of wavelet analysis?®
using discrete notation. This includes a =
discussion of the inherent limitations of ‘ ‘ NANANAE
the windowed Fourier transform (WFT), 80 ey o0 0 2000
the definition of the wavelet transform, c. poc
the choice of a wavelet basis function, ‘
edge effects due to finite-length time se-
ries, the relationship between Waveletg
scale and Fourier period, and time series: LI
reconstruction. Section 4 presents the¢ |\ | U
theoretical wavelet spectra for both
white-noise and red-noise processes. R ‘ ‘
These theoretical spectra are compared to 1880 1900 1920 e (rean)

Monte Carlo results and are used to es- o . . .
. . . Fc. 1. (a) The Nifio3 SST time series used for the wavelet analysis. (b) The
tablish significance levels and confi-

. local wavelet power spectrum of (a) using the Morlet wavelet, normalized by 1/
dence intervals for the wavelet powepe (g2 = 0.54°G). The left axis is the Fourier period (in yr) corresponding to the
spectrum. Section 5 describes time atavelet scale on the right axis. The bottom axis is time (yr). The shaded contours
scale averaging to increase significanca;e at normalized variances of 1, 2, 5, and 10. The thick contour encloses regions
levels and confidence intervals. Sectioff greater than 95% confidence for a red-noise process with a lag-1 coefficient of
6 describes other wavelet applicationg'n' Cross-hatched r'eglons on either end indicate the_ cone of influence, Wh_ere
- .. edge effects become important. (c) Same as (b) but using the real-valued Mexican
such as filtering, the power Hovmoller,hat wavelet (derivative of a Gaussian; D@G= 2). The shaded contour is at
cross-wavelet spectra, and wavelet C@ormalized variance of 2.0.
herence. The summary contains a step-

by-step guide to wavelet analysis.
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entire record have been removed to define an anomaly
time series. The Nifio3 SST is shown in the top plot
2. Data of Fig. 1a.
Gridded sea level pressure (SLP) data is from the
Several time series will be used for examples blKMO/CSIRO historical GMSLP2.1f (courtesy of D.
wavelet analysis. These include the Nifio3 sea surfé&arker and T. Basnett, Hadley Centre for Climate Pre-
temperature (SST) used as a measure of the amplitdidtion and Research, UKMO). The data is on a 5°
of the El Nifio—Southern Oscillation (ENSO). Theglobal grid, with monthly resolution from January
Nifio3 SST index is defined as the seasonal SST 4871 to December 1994. Anomaly time series have
eraged over the central Pacific (5°S—5°N, 90%een constructed by removing the first three harmon-
150°W). Data for 1871-1996 are from an area avécs of the annual cycle (periods of 365.25, 182.625, and
age of the U.K. Meteorological Office GISST2.321.75 days) using a least-squares fit.
(Rayner et al. 1996), while data for January—June 1997The Southern Oscillation index is derived from the
are from the Climate Prediction Center (CPC) optGMSLP2.1f and is defined as the seasonally averaged
mally interpolated Nifio3 SST index (courtesy of Dpressure difference between the eastern Pacific (20°S,
Garrett at CPC, NOAA). The seasonal means for th80°W) and the western Pacific (10°S, 130°E).
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3. Wavelet analysis a. Windowed Fourier transform
The WFT represents one analysis tool for extract-
This section describes the method of wavelet analgg local-frequency information from a signal. The
sis, includes a discussion of different wavelet fun€ourier transform is performed on a sliding segment
tions, and gives details for the analysis of the waveldtlengthT from a time series of time stépand total
power spectrum. Results in this section are adaptedeiogth Not, thus returning frequencies from to
discrete notation from the continuous formulas givé@dt)™ at each time step. The segments can be win-
in Daubechies (1990). Practical details in applyindpwed with an arbitrary function such as a boxcar (no
wavelet analysis are taken from Farge (1992), Weagoothing) or a Gaussian window (Kaiser 1994).
and Lau (1994), and Meyers et al. (1993). Each sec-As discussed by Kaiser (1994), the WFT represents
tion is illustrated with examples using the Nifilo3 SSan inaccurate and inefficient method of time—fre-
quency localization, as itimposes a scale or “response
interval” T into the analysis. The inaccuracy arises
from the aliasing of high- and low-frequency compo-
Y (t/s) (iJ (s w) nents that do not fall within the frequency range of the
window. The inefficiency comes from tAg24) fre-
6 : guencies, which must be analyzed at each time step,
M I : regardless of the window size or the dominant frequen-
M /.'\‘\ Mk 4 | cies present. In addition, several window lengths must
2
0

a. Morlet
0.3}

0.0 WW;‘W}' ’ : | usually be analyzed to determine the most appropri-
| vV o ate choice. For analyses where a predetermined scal-

4 2 0 2 4 2 1 0 1 2 Iingmaynotbe appropriate because of a wide range

of dominant frequencies, a method of time—frequency

0%‘ Paul (m=4) . | localization that is scale independent, such as wave-
=T \ ‘ let analysis, should be employed.
i 4r !
0.0 \/ \‘/ Al b. Wavelet transform
03l \ ol : Thewavelet transforncan be used to analyze time

series that contain nonstationary power at many dif-
ferent frequencies (Daubechies 1990). Assume that
c. DOG (m=2) | one has a time series, with equal time spacing

4 -2 0 2 4 2 -1 0 1 2

031 6 andn=0...N- 1. Also assume that one hasave-

i 4 let function,y,(n), that depends on a nondimensional
0.0 9 “time” parameter. To be “admissible” as a wavelet,
0.3 I 0 this function must have zero mean and be localized in

‘ ‘ ‘ ‘ ‘ ‘ ' both time and frequency space (Farge 1992). An ex-

4 -2 0 2 4 -2 -1 0 1 2 ample is the Morlet wavelet, consisting of a plane
d. DOG (m=6) wave modulated by a Gaussian:

0.3 :

Wo(n)=m¥ie e, @)

0.0/\/\”\ :
VAV

B —— ‘ . wherew, is the nondimensional frequency, here taken
4 -2 0 2 4 -2 -1 0 1 2 tobe 6 to satisfy the admissibility condition (Farge
t/s sw/ (2m 1992). This wavelet is shown in Fig. 2a.
The term “wavelet function” is used generically to
Fic. 2. Four different wavelet bases, from Table 1. The ploggfer to either orthogonal or nonorthogonal wavelets.
on the left give the real part (solid) and imaginary part (dasheﬁ e term “wavelet basis” refers only to an orthogo-

for the wavelets in the time domain. The plots on the right give | ff . Th f h | basi
the corresponding wavelets in the frequency domain. For plotti_ﬂg1 S_Et of functions. _e use of an orthogonal basis
purposes, the scale was chosen teh&0&. () Morlet, (b) Paul IMplies the use of thdiscrete wavelet transform,

(m=4), (c) Mexican hat (DO@ = 2), and (d) DOG = 6). while a nonorthogonal wavelet function can be used
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with either the discrete or theontinuous wavelet

transform(Farge 1992). In this paper, only the con- O 27K kgﬁ
tinuous transform is used, although all of the results W, = 5 Net 2 (5)
for significance testing, smoothing in time and scale, D—% K> N
and cross wavelets are applicable to the discrete wave- H Not 2

let transform.

The continuous wavelet transform of a discrete §§gjng (4) and a standard Fourier transform routine, one
quencex, is defined as the convolution Bfwith @ - ¢4, calculate the continuous wavelet transform (for a
scaled and translated versiong(n): givens) at alln simultaneously and efficiently.

N-1 n - n)5t 0 c. Normalization
W, (s) = Z xn,wEé(iE} 2) To ensure that the wavelet transforms (4) at each
=0 o s scalesare directly comparable to each other and to the
transforms of other time series, the wavelet function
where the (*) indicates the complex conjugate. B3t each scalgis normalized to have unit energy:
varying thewavelet scale and translating along the
localized time index,none can construct a picture rs?
showing both the amplitude of any features versus the P(sw,) = EaE P o(sw,). (6)
scale and how this amplitude varies with time. The ot
subscript 0 ony has been dropped to indicate that this
¥ has also been normalized (see next section). Axamples of different wavelet functions are given in
though it is possible to calculate the wavelet transfoffable 1 and illustrated in Fig. 2. Each of the unscaled
using (2), it is considerably faster to do the calculg are defined in Table 1 to have
tions in Fourier space.
To approximate the continuous wavelet transform, bo o
the convolution (2) should be doNetimes for each I_m [@o(ew) der =1;
scale, wherd\ is the number of points in the time se-

ries (Kaiser 1994). (The choice of doingMditonvo- - that is, they have been normalized to have unit energy.
lutions is arbltl’al’y, and one could choose a Sma”erUSing these normalizations’ at each sesalee has
number, say by skipping every other poinhipBy

choosingN points, the convolution theorem allows us

do allN convolutions simultaneously in Fourier space Nzlw,(swk)r =N )
using a discrete Fourier transform (DFT). The DFT = '
of x is
whereN is the number of points. Thus, the wavelet
o _ 1 transform is weighted only by the amplitude of the
TN D Xe , (3)  Fourier coefficients, and not by the wavelet function.
n=C If one is using the convolution formula (2), the nor-
malization is

wherek = 0 ...N - 1 is the frequency index. In the

continuous limit, the Fourier transform of a function E( ' )6tD ) E( ' )6tD
W(t/s) is given by (sw). By the convolution theorem, A n—njot ?g n—n

the wavelet transform is the inverse Fourier transform L'UD S E S Yo DD s E (8)
of the product:

wherey, () is normalized to have unit energy.

N-1
W, (s) = Z X (s, )e ™ (4) d- Wavelet power spectrum
=0 Because the wavelet functiap(n) is in general
complex, the wavelet transfovi (s) is also complex.
where the angular frequency is defined as The transform can then be divided into the real part,
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TasLe 1. Three wavelet basis functions and their properties. Constant factggsafat(, ensure a total energy of unity.

e-folding Fourier
Name w(m (fio(sw) time 7, wavelength A
. __ 4
Morlet mt 4eiw0”e_'72/2 7T7]/4H(Ct))e_(sw_wo) f \2s W, + \/2 + O)(ZJ
(w, = frequency)
2" "m! . \—(m+1) 2™ m —sw A7TS
Paul — o @-in) ————H(w)(sw)"e §\2
m(2m)! m(2m-1)! N
(m= order) y(2m) vm( ) 2m+1
—1)m+1 m ) im )
(]-):I_ddr]m (e_ﬂ /2) ‘Iil(sw)me-(sw) /2 27'!51
DOG /r ,10 [0, 10 2 T
(m= derivative) \ aﬂ 20 \ ET“ 20 Vo2

H(w) = Heaviside step function, i = 1 if w> 0, H(w) = 0 otherwise.
DOG = derivative of a Gaussiam;= 2 is the Marr or Mexican hat wavelet.

O{W.(s)}, and imaginary part, {W (s)}, or ampli- ies (Trenberth 1976) and is also seen in the Fourier
tude W (s)|, and phase, tatil{ W (s)}/ D{W (9)}]. Fi- spectrum in Fig. 3. With wavelet analysis, one can see
nally, one can define theavelet power spectruas variations in the frequency of occurrence and ampli-
|W (s)l. For real-valued wavelet functions such as thede of EI Nifio (warm) and La Nifia (cold) events.
DOGs (derivatives of a Gaussian) the imaginary p&tring 1875-1920 and 1960-90 there were many
is zero and the phase is undefined. warm and cold events of large amplitude, while dur-
To make it easier to compare different wavelétg 1920-60 there were few events (Torrence and
power spectra, it is desirable to find a common ndi¥ebster 1997). From 1875-1910, there was a slight
malization for the wavelet spectrum. Using the noshift from a period near 4 yr to a period closer to 2 yr,
malization in (6), and referring to (4), tegpectation while from 1960-90 the shift is from shorter to longer
valuefor W ()] is equal taN times the expectation periods.
value for| [°. For a white-noise time series, this ex- These results are similar to those of Wang and
pectation value ig%/N, whereg? is the variance. Thus,Wang (1996), who used both wavelet and waveform
for a white-noise process, the expectation value for @galysis on ENSO indices derived from the Compre-
wavelet transform iV (s)f? = o at alln ands. hensive Ocean—-Atmosphere Data Set (COADS)
Figure 1b shows the normalized wavelet poweiataset. Wang and Wang'’s analysis showed reduced
spectrum|W (s)f/o?, for the Nifio3 SST time serieswavelet power before 1950, especially 1875-1920. The
The normalization by B? gives a measure of thereduced power is possibly due to the sparseness and de-
powerrelative towhite noise. In Fig. 1b, most of thecreased reliability of the pre-1950 COADS data (Folland
power is concentrated within the ENSO band of 2-e®al. 1984). With the GISST2.3 data, the wavelet trans-
yr, although there is appreciable power at longer pefidrm of Nifio3 SST in Fig. 1b shows that the pre-1920
ods. The 2—-8-yr band for ENSO agrees with other stymkriod has equal power to the post-1960 period.
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and is better adapted for capturing oscillatory be-

141 havior. A real wavelet function returns only a
12 single component and can be used to isolate peaks
or discontinuities.
_— 101 3) Width. For concreteness, the width of a wavelet
© function is defined here as tedolding time of the
L 8 wavelet amplitude. The resolution of a wavelet
= function is determined by the balance between the
E 6 width in real space and the width in Fourier space.

resolution but poor frequency resolution, while a

broad function will have poor time resolution, yet

J A&t . good frequency resolution.

‘ ‘ ‘ ‘ ‘ HEM»; 4) ShapeThe wavelet function should reflect the type

64 32 16 8 4 1 0. of features present in the time series. For time se-

Period (years) ries with sharp jumps or steps, one would choose

a boxcar-like function such as the Harr, while for

smoothly varying time series one would choose a

Fic. 3. Fourier power spectrum of Nifio3 SST (solid), smooth function such as a damped cosine. If one
no_rmalized byN/(20%). The Iower dashed line is the mean red- g primarily interested in wavelet power spectra,
noise spectrum from (16) assuming a lag-4 of0.72. The upper then the choice of wavelet function is not critical
dashed line is the 95% confidence spectrum. ; . . o !

and one function will give the sanggalitative
results as another (see discussion of Fig. 1 below).

2]
0

m 7 A narrow (in time) function will have good time
2

e. Wavelet functions Four common nonorthogonal wavelet functions are
One criticism of wavelet analysis is the arbitrargiven in Table 1. The Morlet and Paul wavelets are
choice of the wavelet functioy,(n). (It should be both complex, while the DOGs are real valued. Pic-
noted that the same arbitrary choice is made in ustoges of these wavelet in both the time and frequency
one of the more traditional transforms such as the Fa@main are shown in Fig. 2. Many other types of wave-
rier, Bessel, Legendre, etc.) In choosing the wavelets exist, such as the Haar and Daubechies, most of
function, there are several factors which should beénich are used for orthogonal wavelet analysis (e.qg.,
considered (for more discussion see Farge 1992). Weng and Lau 1994; Mak 1995; Lindsay et al. 1996).
For more examples of wavelet bases and functions, see
1) Orthogonal or nonorthogonalln orthogonal Kaiser (1994).
wavelet analysis, the number of convolutions at For comparison, Fig. 1¢ shows the same analysis
each scale is proportional to the width of the wavas in 1b but using the Mexican hat wavelet (DOG,
let basis at that scale. This produces a wavelet spec= 2) rather than the Morlet. The most noticeable dif-
trum that contains discrete “blocks” of wavelefierence is the fine scale structure using the Mexican
power and is useful for signal processing as it givhat. This is because the Mexican hat is real valued and
the most compact representation of the signal. Uzaptures both the positive and negative oscillations of
fortunately for time series analysis, an aperiodihe time series as separate peaks in wavelet power. The
shift in the time series produces a different wav&4orlet wavelet is both complex and contains more
let spectrum. Conversely, a nonorthogonal analyscillations than the Mexican hat, and hence the wave-
sis (such as used in this study) is highly redunddet power combines both positive and negative peaks
at large scales, where the wavelet spectrum at ade a single broad peak. A plot of the real or imagi-
jacent times is highly correlated. The nonorthograry part oW (s) using the Morlet would produce a
onal transform is useful for time series analysiplot similar to Fig. 1c. Overall, the same features ap-
where smooth, continuous variations in wavel@ear in both plots, approximately at the same locations,
amplitude are expected. and with the same power. Comparing Figs. 2a and 2c,
2) Complex or realA complex wavelet function will the Mexican hat is narrower in time-space, yet broader
return information about both amplitude and phagespectral-space than the Morlet. Thus, in Fig. 1c, the

66 Vol. 79, No. 1, January 1998



peaks appear very sharp in the time direction, yet are

more elongated in the scale direction. Finally, the re_TABLE 2. Empirically derived factors for four wavelet bases.
lationship between wavelet scale and Fourier period

is very different for the two functions (see section 3h). ~ Name Cs y %, ¥,0)

f. Choice of scales Morlet (w, = 6) 0.776 2.32 0.60 4

Once a wavelet function is chosen, it is necess:
to choose a set of scake® use in the wavelet trans-
form (4) For an Orthogonal Wavelet, one is limited thIan— (DOGm= 2) 3.541 1.43 1.4 0.867
a discrete set of scales as given by Farge (1992). For
nonorthogonal wavelet analysis, one can use an a DOG (m= 6) 1.966 1.37 0.97  0.884
trary set of scales to build up a more complete pictures

It is convenient to write the scales as fractional po\@;= reconstruction factor.
ers of two: y= decorrelation factor for time averaging.
dj,= factor for scale averaging.

Paul M= 4) 1132 117 1.5 1.079

5=%27, j=01..,J (9)

region of the wavelet spectrum in which edge effects
J=6j"log,(Nét/s,), (10) become important and is defined here asetfmd-

ing time for the autocorrelation of wavelet power at
wheres, is the smallest resolvable scale drdkter- each scale (see Table 1). Thifolding time is cho-
mines the largest scale. Thehould be chosen so thasen so that the wavelet power for a discontinuity at the
the equivalent Fourier period (see section 3h) is amge drops by a facter? and ensures that the edge
proximately 2t. The choice of a sufficiently sma}l effects are negligible beyond this point. For cyclic
depends on the width in spectral-space of the wavedeties (such as a longitudinal strip at a fixed latitude),
function. For the Morlet wavelet,@ of about 0.5 is there is no need to pad with zeroes, and there is no COI.
the largest value that still gives adequate sampling inThe size of the COIl at each scale also gives a mea-
scale, while for the other wavelet functions, a largeure of the decorrelation time for a single spike in the
value can be used. Smaller valuegjdjive finer reso- time series. By comparing the width of a peak in the
lution. wavelet power spectrum with this decorrelation time,

InFig. 1b,N=506,0t = V4 yr,s = 23, § = 0.125, one can distinguish between a spike in the data (pos-

andJ = 56, giving a total of 57 scales ranging frormsibly due to random noise) and a harmonic component
0.5 yr up to 64 yr. This value @f appears adequateat the equivalent Fourier frequency.

to provide a smooth picture of wavelet power. The COl isindicated in Figs. 1b and 1c by the cross-
hatched regions. The peaks within these regions have
g. Cone of influence presumably been reduced in magnitude due to the zero

Because one is dealing with finite-length time s@adding. Thus, it is unclear whether the decrease in 2—
ries, errors will occur at the beginning and end of ti&eyr power after 1990 is a true decrease in variance or
wavelet power spectrum, as the Fourier transforman artifact of the padding. Note that the much narrower
(4) assumes the data is cyclic. One solution is to peléxican hat wavelet in Fig. 1¢c has a much smaller
the end of the time series with zeroes before doing tB®I and is thus less affected by edge effects.
wavelet transform and then remove them afterward
[for other possibilities such as cosine damping, seeWavelet scale and Fourier frequency
Meyers et al. (1993)]. In this study, the time series is An examination of the wavelets in Fig. 2 shows that
padded with sufficient zeroes to bring the total lengthe peak inJ (sw) does not necessarily occur at a fre-
N up to the next-higher power of two, thus limitingjuency ofs™. Following the method of Meyers et al.
the edge effects and speeding up the Fourier transfo(h®93), the relationship between #guivalent Fou-

Padding with zeroes introduces discontinuities aer period and the wavelet scale can be derived ana-
the endpoints and, as one goes to larger scales, |geally for a particular wavelet function by substitut-
creases the amplitude near the edges as more zemgs cosine wave of a known frequency into (4) and
enter the analysis. Tleone of influencéCOl) is the computing the scakat which the wavelet power spec-
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trum reaches its maximum. For the Morlet wavelet

with w, = 6, this gives a value af= 1.03, whereA is W;(s) =
the Fourier period, indicating that for the Morlet wave-

let the wavelet scale is almost equal to the Fourier

period. Formulas for other wavelet functions are givdihe reconstruction (11) then gives
in Table 1, while Fig. 2 gives a graphical representation.

Zl-

Z@dww. (12)
=0

In Figs. 1b,c, the ratio of Fourier period to wavelet PP D{W (s )}
scale can be seen by a comparison of the left and right L 5\ (13)
axes. For the Morlet, the two are nearly identical, while ° w,(0) & s

for the Mexican hat, the Fourier period is four times

larger than _the scale. This ratio has_no special sign heC;is scale independent and is a constant for each
cance and is due solely to the functional form of e

wavelet function. However, one should certainly con velet function.
) : y The total energy is conserved under the wavelet

vert from scale to Fourier period before plotting, Pansform. and the equivalent Bérseval's theorem
presumably one is interested in equating wave ?wavelét analysis is

power at a certain time and scale with a (possibly short-
lived) Fourier mode at the equivalent Fourier period.

. 6]61: N-1 J ‘an(sj )‘2

_QNZZ s (14)

n=0 |=0 j

i. Reconstruction o
Since the wavelet transform is a bandpass filter with

a known response function (the wavelet function), it

is possible taeconstructthe original time series us-whered? is the variance and&unction has been as-

ing either deconvolution or the inverse filter. This isumed for reconstruction. Both (11) and (14) should

straightforward for the orthogonal wavelet transfortme used to check wavelet routines for accuracy and to

(which has an orthogonal basis), but for the continensure that sufficiently small valuesspindd) have

ous wavelet transform it is complicated by the redubeen chosen.

dancy in time and scale. However, this redundancyFor the Nifio3 SST, the reconstruction of the time

also makes it possible to reconstruct the time sergggies from the wavelet transform has a mean square

using a completely different wavelet function, the easror of 1.4% or 0.087°C.

est of which is a deltad] function (Farge 1992). In

this case, the reconstructed time series is just the sum

of the real part of the wavelet transform over all scalds Theoretical spectrum and significance

levels
= djot? J D{V\/n(sj )} To determine significance levels for either Fourier
" Cy,(0) ,Zo s}VZ (1) or wavelet spectra, one first needs to choose an appro-

priate background spectrum. It is then assumed that

different realizations of the geophysical process will
The factory(0) removes the energy scaling, while thise randomly distributed about this mean or expected
s'2 converts the wavelet transform to an energy ddmackground, and the actual spectrum can be compared
sity. The factoC, comes from the reconstruction of against this random distribution. For many geophysi-
d function from its wavelet transform using the funazal phenomena, an appropriate background spectrum
tion (). ThisC;is a constant for each wavelet funds either white noise (with a flat Fourier spectrum) or
tion and is given in Table 2. Note that if the originakd noise (increasing power with decreasing frequency).
time series were complex, then the sum of the com-A previous study by Qiu and Er (1995) derived the
plexW (s) would be used instead. mean and variance of the local wavelet power spec-

To deriveC; for a new wavelet function, first as-trum. In this section, the theoretical white- and red-

sume a time series withddunction at timen = 0, given noise wavelet power spectra are derived and compared
by x, = 4. This time series has a Fourier transforto Monte Carlo results. These spectra are used to es-
% =N, constant for alk. Substitutingg_into (4), at tablish anull hypothesisor the significance of a peak
timen = 0 (the peak), the wavelet transform becomasthe wavelet power spectrum.
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a. Fourier red noise spectrum

Many geophysical time series can be modeled as
either white noise or red noise. A simple model for re§ 10°
noise is the univariate lag-1 autoregressive [AR(1), ¢f
Markov] process: * 100

0 100 200 300 400 500

Xy = axn—l + Zy (15)

wherea is the assumed lag-1 autocorrelatigz 0,  ~
andz, is taken from Gaussian white noise. Followings 10
Gilman et al. (1963), the discrete Fourier power speg-

trum of (15), after normalizing, is 1007
0 100 200 300 400 500
) Time (&t)
1-a )
= 5 , (16) Fic. 4. (a) The local wavelet power spectrum for a Gaussian
1+a” -2a COS(ZT[k/N) white noise process of 512 points, one of the 100 000 used for

the Monte Carlo simulation. The power is normalized/o, and

— : - ontours are at 1, 2, and 3. The thick contour is the 95% confidence
wherek =0 ...N/2 is the frequency index. Thus, bsrevel for white noise. (b) Same as (a) but for a red-noise AR(1)

choosing an appropriate I"’_lg'l autocorrelation, one ‘fﬁ&ess with lag-1 of 0.70. The contours are at 1, 5, and 10. The
use (16) to model a red-noise spectrum. Noteatha® thick contour is the 95% confidence level for the corresponding

in (16) gives a white-noise spectrum. red-noise spectrum.

The Fourier power spectrum for the Nifio3 SST is
shown by the thin line in Fig. 3. The spectrum has been
normalized byN/202, whereN is the number of points, ~ Therefore, the lower dashed curve in Fig. 3 also
and ¢? is the variance of the time series. Using thorresponds to the red-noise local wavelet spectrum.
normalization, white noise would have an expectatiénrandom vertical slice in Fig. 1b would bepected
value of 1 at all frequencies. The red-noise backgrouigchave a spectrum given by (16). As will be shown in
spectrum forr = 0.72 is shown by the lower dashegéection 5a, the average of all the local wavelet spectra
curve in Fig. 3. This red-noise was estimated fram (tends to approach the (smoothed) Fourier spectrum of
+ /d,)/2, wherea, anda, are the lag-1 and lag-2the time series.
autocorrelations of the Nifio3 SST. One can see the
broad set of ENSO peaks between 2 and 8 yr, weliSignificance levels

above the background spectrum. The null hypothesis is defined for the wavelet power
spectrum as follows: It is assumed that the time series
b. Wavelet red noise spectrum has a mean power spectrum, possibly given by (16);

The wavelet transform in (4) is a series of bandpaks peak in the wavelet power spectrum is significantly
filters of the time series. If this time series can @ove this background spectrum, then it can be as-
modeled as a lag-1 AR process, then it seems reassfined to be a true feature with a certain percent con-
able that thdocal wavelet power spectryrdefined fidence. For definitions, “significant at the 5% level”
as a vertical slice through Fig. 1b, is given by (16). T® equivalent to “the 95% confidence level,” and im-
test this hypothesis, 100 000 Gaussian white-noigkes a test against a certain background level, while
time series and 100 000 AR(1) time series were cdhe “95% confidencénterval’ refers to the range of
structed, along with their corresponding wavelet poweenfidence about a given value.
spectra. Examples of these white- and red-noise waveT he normalized Fourier power spectrum in Fig. 3
let spectra are shown in Fig. 4. The local wavelet spéggiven byN|R /2a?, whereN is the number of points,
tra were constructed by taking vertical slices at tinfeis from (3), andy? is the variance of the time series.

n = 256. The lower smooth curves in Figs. 5a and §bx, is a normally distributed random variable, then
show the theoretical spectra from (16). The dots shoath the real and imaginary partsfpfare normally
the results from the Monte Carlo simulation. On adgistributed (Chatfield 1989). Since the square of a
erage, the local wavelet power spectrum is identigé@drmally distributed variable is chi-square distributed
to the Fourier power spectrum given by (16). with onedegree of freedortDOF), then[g |* is chi-
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square distributed with two DOFs, denoted Y3y a. a=0.00
(Jenkins and Watts 1968). To determine the 95% con- 4 "~ = 17"
fidence level (significant at 5%), one multiplies the
background spectrum (16) by the 95th percentile value " 95% ]
for x2 (Gilman et al. 1963). The 95% Fourier confi- ] S PGP U U SN S S SR
dence spectrum for the Nifio3 SST is the upper dashed 1
curve in Fig. 3. Note that only a few frequencies now ©
have power above the 95% line.

In the previous section, it was shown that the local
wavelet spectrum follows the mean Fourier spectrum. ,
If the original Fourier components are normally dis- " Mean
tributed, then the wavelet coefficients (the bandpassed  1f
inverse Fourier components) should also be normally :
distributed. If this is true, then the wavelet power spec-

Variance

trum, W (s)[?, should bex; distributed. The upper Obei v v e e
curves in Figs. 5a and 5b show the 95% Fourier red- 1000 100 10 1
noise confidence level versus the 95% level from the Period (dt)
Monte Carlo results of the previous section. Thus, at
each pointig, 9 in Fig. 1b, assuming a red-noise pro- 20 b GZO?Q -
cess, the distribution ig5. Note that for a wavelet i
transform using a real-valued function, such as the | 95%
Mexican hat shown in Fig. 1c, there is only one de- —
gree of freedom at each point, and the distribution is 15f ]
Xi- < T
' In summary, assuming a mean background spec*% I
trum, possibly red noise [(16)], the distribution for the & 10+ g
Fourier power spectruris g
S
N|%, | 5 -
2|Uk2| 0 SR (17 —
0 I | Loy %

at each frequency inddéxand ‘0 " indicates “is dis- b
tributed as.” The corresponding distribution for the 1000
local wavelet power spectruis

100 10 1
Period (dt)

Fic. 5. (a) Monte Carlo results for local wavelet spectra of white
5 noise @ = 0.0). The lower thin line is the theoretical mean white-
|V\/n (S)| 1 2 noise spectrum, while the black dots are the mean at each scale
o2 [ E Pk 2 (18) of 100 000 local wavelet spectra. The local wavelet spectra were
slices taken at time = 256 out ofN = 512 points. The top thin
line is the 95% confidence level, equaki§95%) times the mean

at each time and scales. The ¥2 removes the DOF spectrum. The black dots are the 95% level from the Monte Carlo
factor from they? distribution. (For a real wavelet thgus- (b) Same as (a) but for red noiserf0.70.

distribution on the right-hand side would®g?.) The

value ofR, in (18) is the mean spectrum at the Fourier

frequencyk that corresponds to the wavelet sedkee  As with Fourier analysis, smoothing the wavelet
section 3h). Aside from the relation betwéeands, power spectrum can be used to increase the DOF and
(18) is independent of the wavelet function. After findenhance confidence in regions of significant power.
ing an appropriate background spectrum and chodhkilike Fourier, smoothing can be performed in either
ing a particular confidence fg? such as 95%, one carthe time or scale domain. Significance levels and
then calculate (18) at each scale and construct 98Fs for smoothing in time or scale are discussed in
confidence contour lines. section 5.
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Inside the COl, the distribution is stiff, but if the (20) one can then find confidence intervals for the
time series has been padded with zeroes, then the npesaks in a wavelet power spectrum to compare against
spectrum is reduced by a factor oi{%e?'%), where either the mean background or against other peaks.
7_is from Table 1, antis the distance (in time) from
either the beginning or end of the wavelet power spex-Stationarity
trum. It has been argued that wavelet analysis requires the

The 95% confidence level for the Nifio3 SST igse of nonstationary significance tests (Lau and Weng
shown by the thick contours on Figs. 1b and 1c. DUr995). In defense of the use of stationary tests such as
ing 1875-1910 and 1960-90, the variance in the 2-tBese given above, the following points are noted.
yr band is significantly above the 95% confidence for
red noise. During 1920-60, there are a few isolat&yl A nonarbitrary test is needed. The assumption of
significant regions, primarily around 2 yr, and at the stationary statistics provides a standard by which
edge of the usual 2—8 yr ENSO band. The 95% confi- any nonstationarity can be detected.
dence implies that 5% of the wavelet power should B The test should be robust. It should not depend
above this level. In Fig. 4b, approximately 5% of the upon the wavelet function or upon the actual dis-
points are contained within the 95% contours. For the tribution of the time series, other than the assump-
Nifio3 wavelet spectrum, 4.9% of the points are above tion of a background spectrum.

95%, implying that for the Nifio3 time series a test &) A non—Monte Carlo method is preferred. In addi-
enclosed area cannot distinguish between noise andion to the savings in computation, the chi-square
signal. However, the spatial distribution of variance test simplifies comparing one wavelet transform
can also be examined for randomness. In Fig. 4b, thewith another.
variance shows a gradual increase with period, wdh Many wavelet transforms of real data appear simi-
random distributions of high and low variance about lar to transforms of red-noise processes (compare
this mean spectrum. In Figs. 1b and 1c, the significant Figs. 1b and 4b). It is therefore difficult to argue
regions are clustered together in both period and time,that large variations in wavelet power imply
indicating less randomness of the underlying process. nonstationarity.

5) One needs to ask what is being tested. Is it
d. Confidence interval nonstationarity? Or low-variance versus high-vari-

Theconfidence intervak defined as the probabil-  ance periods? Or changes in amplitude of Fourier
ity that the true wavelet power at a certain time and modes? The chi-square test gives a standard mea-
scale lies within a certain interval about the estimated sure for any of these possibilities.
wavelet power. Rewriting (18) as

In short, it appears wiser to assume stationarity and
2 5 design the statistical tests accordingly. If the tests show
|W“(S)| 0 X2 (19) large deviations, such as the changes in ENSO vari-
o’R, 2 ance seen in Figs. 1b and 1c, then further tests can be
devised for the particular time series.

one can then replace the theoretical wavelet pottRer
with thetrue wavelet powerdefined adt/%(s). The

confidence interval folt/%(s) is then 5. Smoothing in time and scale
2 ) 2 ) a. Averaging in time (global wavelet spectrum)
(07) W,(s)" < wi(s)< WWVH(S)' , If a vertical slice through a wavelet plot is a mea-
X2\P X2 P sure of the local spectrum, then tiree-averaged

(20) wavelet spectrurnver a certain period is

wherep is the desired significance € 0.05 for the

Ny
95% confidence interval) ar¢f(p/2) represents the W?2(s) -1 Z|V\/n(s)|2 (21)
value ofx? atp/2. Note that for real-valued wavelet L= ’

functions, the right-hand side of (19) becorxgsind
the factor of 2 is removed from the top of (20). Usinghere the new inder is arbitrarily assigned to the
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Fic. 6. Fourier power spectrum from Fig. 3, smoothed with

five-point running average (thin solid line). The thick solid line i
the global wavelet spectrum for the Nifio3 SST. The lower dasH@

sure of the background spectrum, against which peaks
in the local wavelet spectra could be tested (Kestin et
al. 1998).

By smoothing the wavelet spectrum using (21), one
can increase the degrees of freedom of each point and
increase the significance of peaks in wavelet power.
To determine the DOFs, one needs the number of in-
dependent points. For the Fourier spectrum (Fig. 3),
the power at each frequency is independent of the oth-
ers, and the average of the poweMatrequencies,
each with two DOF, ig?2 distributed with 21 degrees
of freedom (Spiegel 1975). For the time-averaged
wavelet spectrum, one is also averaging points that are
X: distributed, yet Figs. 1b and 4 suggest that these
points are no longer independent but are correlated in
both time and scale. Furthermore, the correlation in
time appears to lengthen as scale increases and the
\Sfi’lavelet function broadens. Designatings the DOFs,

pe expecty [ n, andv [ s™. The simplest formula

line is the mean red-noise spectrum, while the upper dashed figeconsider is to define a decorrelation lengthys,
is the 95% confidence level for the global wavelet spectrusuch thaty = 2n ot/7. However, Monte Carlo results

assumingx = 0.72.

midpoint ofn, andn,, andn, =n,—n, + 1 is the num-

show that thig is too abrupt at smail or large scales;

even though one is averaging points that are highly

correlated, some additional information is gained.
The Monte Carlo results are given in Fig. 7, which

ber of points averaged over. By repeating (21) at eatiows the mean and 95% levels for variouShese
time step, one creates a wavelet plot smoothed by a

certain window.

The extreme case of (21) is when the average is over
all the local wavelet spectra, which gives tiebal

wavelet spectrum

In Fig. 6, the thick solid line shows the normalized
global wavelet spectruridy 4(s)/ a2, for the Nifio3 SST. i
The thin solid line in Fig. 6 shows the same spectrum 1 E
as in Fig. 3, but smoothed with a five-point running
averagelNote that as the Fourier spectrum is smoothed,
it approaches the global wavelet spectrum more and OL

Ap

- 95%

3F * .
o . 5
)

oL 15 1

25
51

s

Variance

more closely, with the amount of necessary smooth- 1000 100 10 1

ing decreasing with increasing scale. A comparison of Period (dt)

Fourier spectra and wavelet spectra can be found inFe. 7. Monte Carlo results for the time-averaged wavelet
Hudgins et al. (1993), while a theoretical discussienectra (21) of white noise using the Morlet wavelet. The numbers
is given in Perrier et al. (1995). Percival (1995) showgthe right of each curve indicatg the number of times that were

that the global wavelet spectrum provides an unbias?
and consistent estimation of the true power spectr

araged, while the black dots are the 95% level for the Monte
arlo runs. The top thin lines are the 95% confidence from (23).
YL lower thin line is the mean white-noise spectrum, while the

of a time series. Finally, it has been §uggested that §@k dots are the means of the Monte Carlo runs (all of the means
global wavelet spectrum could provide a useful meae identical).
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curves are best described by the distribuBgy?/v, Comparing (24) and (14), the scale-averaged wavelet
whereP, is the original assumed background spectrupower is a time series of the average variance in a cer-
andy?is the chi-square distribution withdegrees of tain band. Thus, the scale-averaged wavelet power can
freedom, where be used to examine modulation of one time series by
another, or modulation of one frequency by another
within the same time series.

—5 w“ 1+ Ch, ot f As an example of averaging over scale, Fig. 8 shows
V= \C E Vs H . (23) the average of Fig. 1b over all scales between 2 and 8

yr (actually 2—7.34 yr), which gives a measure of the
average ENSO variance versus time. The variance plot
Note that for a real-valued function such as the Mexhows a distinct period between 1920 and 1960 when
can hat, each point only has one DOF, and the fadEMSO variance was low. Also shown in Fig. 8 is the
of 2 in (23) is removed. The decorrelation fagtis variance in the Southern Oscillation index (SOI),
determined empirically by an iterative fit of absolutevhich correlates well with the changes in Nifio3 SST
error to the 95% Monte Carlo level and
is given in Table 2 for the four wavelet 0.5, — NINOS
. . —=S0I “ 25
functions. The relative error (or percent_ oo /\ i

B
-l

N

difference) between the Monte Carlo and
thex?/v distribution was everywhere less8 **
than 7% for all scales amjvalues. The = %% .
thin lines in Fig. 7 show the results of *° oo 1e00 100 o0 1950 1950 2008
(23) using the Morlet wavelet. Note that Year

even the white noise process has more Fic. 8. Scale-averaged wavelet power (24) over the 2-8-yr band for the Nifio3

stringent 95% confidence levels at larg&ST (solid) and the SOI (dashed). The thin solid line is the 95% confidence level

scales compared to small. As a final notg,om_ (26) for Nifio3 SST (assuming req nose 0.72), while the thin dashed

if the points going into the average argne is the 95% level for the SOI (red noise 0.61).

within the cone of influence, thenis re-

duced by approximately one-half of the number withirariance (0.72 correlation). Both time series show

the COl to reflect the decreased amplitude (and infaensistent interdecadal changes, including a possible

mation) within that region. modulation in ENSO variance with a 15-yr period. To
A different definition of the global wavelet specexamine more closely the relation between Nifio3 SST

trum, involving the discrete wavelet transform anand the SOI, one could use the cross-wavelet spectrum

including a discussion of confidence intervals, is givédeee section 6c¢).

by Percival (1995). An example using Percival's defi- As with time-averaged wavelet spectrum, the DOFs

nition can be found in Lindsay et al. (1996). are increased by smoothing in scale, and an analytical
The 95% confidence line for the Nifio3 globalelationship for significance levels for the scale-aver-

wavelet spectrum is the upper dashed line in Fig.a@jed wavelet power is desirable. Again, it is conve-

Only the broad ENSO peak remains significant, atient to normalize the wavelet power by the expecta-

though note that power at other periods can be less ttian value for a white-noise time series. From (24), this

significant globally but still show significant peaks irexpectation value i) ot 02)/(Césavg), whereo? is the

H
(6]
SOl (mb?)

local wavelet power. time-series variance ai§}, is defined as
b. Averaging in scale _ 1
To examine fluctuations in power over a range of _ 0 10
scales (a band), one can define sbale-averaged Swg =0 EE : (25)
=h )

wavelet poweis the weighted sum of the wavelet
power spectrum over scalggos,:
The black dots in Fig. 9 show the Monte Carlo re-

__, i V\/n(sj )‘2 sults for both the mean and the 95% level of scale-
W2 = (24) averaged wavelet power as a function of varioys
C &S wheren_=j, -], + 1is the number of scales averaged.
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Ar— T T T whereS,_ =§ 205429, The factoS /S, corrects for

« 95% ] the loss of DOF that arises from dividing the wavelet
] power spectrum by scale in (24) and is observed in the
30 . . - boG? ] Monte Carlo results. Note that for a real-valued func-

N =% * 2DOG6 | tion such as the Mexican hat, each point only has one

f Pauld. ] DOF, and the factor of 2 in (28) is removed. The
f ] decorrelation distana®, is determined empirically by
5 Morlet ] an iterative fit of absolute error between (28) and the

95% level of the Monte Carlo results and is given in

Table 2. The thin lines in Fig. 9 show the results of

(28) for the Morlet, Pauini = 4), DOG2, and DOG6

wavelet functions. For these wavelets, the relative er-

ror between the? distribution using (28) and the

, ] Monte Carlo results is less than 1.5%. It should be

oL . . . . noted that (28) is valid only for confidences of 95%
o 2 4 6 8 10 or less. At higher confidence levels, the distribution

n,0j (# scales in avg, compressed) begins to deviate significantly frogt, and (28) is no
Fic. 9. Monte Carlo results for the wavelet spectra averagkshger valid.
overn, scales from (24), using white noise. The average from (24) | Fig. 8, the thin solid and dashed lines show the

is centered on scate= 160t for convenience, but the results ar 5% confidence levels for the Nifio3 SST and the SOI
independent of the center scale. To make the graph independent

of the choice foDj, thex axis has been compressed by the MonteSINg (25)_(28_)' In th_ls casgj = 0.125, the sum was
Carlo & of 0.25. The top black dots are the 95% level for tHa€tween Fourier periods 2 and 8 yr (actually 2.1-7.6
Monte Carlo runs, while the lower black dots are the means. T¥i#, n,= 16,Savg =0.221yrS ,=3.83 yr,cY0 =0.60,
means for all four wavelet bases are all the same, while the 98¥%d v = 6.44. Since the two time series do not have

level depends on the width of the basis in Fourier space, with % same variance or the same red-noise background
Morlet being the most narrow. The top thin lines are the 95% . '
-the 95% lines are not equal.

confidence from (28). The lower thin line is the mean white-noise
spectrum.

- Mean

Normalized Variance
N

6. Extensions to wavelet analysis

Using the normalization factor for white noise, the

distribution can be modeled as a. Filtering _ o
As discussed in section 3i, the wavelet transform

(4) is essentially a bandpass filter of uniform shape and
varying location and width. By summing over a sub-
set of the scales in (11), one can construweheelet-
filtered time series:

C _ o 2
d‘;igz an2 D P )‘(/Vv

(26)

where the scale-averaged theoretical spectrum is now

given by 3 otv2 i2 D{an(sj )}
X =

" Céwo(o) 1=h S:'L/Z

]

(29)

iz P
P = Ml
P= S‘“’QJZJ s (27)  This filter has a response function given by the sum
' of the wavelet functions between scgleand.,.

This filtering can also be done on both the scale and
me simultaneously by defining a threshold of wave-
et power. This “denoising” removes any low-ampli-
tude regions of the wavelet transform, which are pre-
sumably due to noise. This technique has the advan-

2n,S, M £ tage over traditional filtering in that it removes noise
a g ad - - .
= 1+ 28) at all frequencies and can be used to isolate single
S Ha H - (28)

events that have a broad power spectrum or multiple

Note that for white noise this spectrum is still unit}{
(due to the normalization). The degrees of freedon?
in (26) is modeled as

0

74 Vol. 79, No. 1, January 1998



events that have varying frequency. A more complete (&) Power28yrsslp 50°St0 150°S _~ (b) Zonal Avg
description including examples is given in Donoho 19903\/9 ,( N e B e
and Johnstone (1994). 1080 -t :
Another filtering technique involves the use of the =, | 0@

two-dimensional wavelet transform. An example can ¢ | ‘
be found in Farge et al. (1992), where two-dimensionar™
turbulent flows are “compressed” using an orthonor-esof;
mal wavelet packet. This compression removes the,, :
low-amplitude “passive” components of the flow, : ‘ !
while retaining the high-amplitude “dynamically ac- "~ 1 5
tive” components. 1920 -y S A |

}9eo§ 0

1910k

b. Power Hovmoller g

By scale-averaging the wavelet power spectra afgoog : ‘
multiple locations, one can assess the spatial and terfoo:—
poral variability of a field of data. Figure 10a ShOws a5,
power Hovméller(time—longitude diagram) of the = & T 7 ‘
wavelet variance for sea level pressure (SLP) anomga- O SUE L0 180 120W 60W 07030 0ds 000
lies in the 2—8-yr band at each longitude. The original335F ]
time series at each longitude is the average SLP Eaﬂeig?/\fh\fi
tween 5° and 15°S. At each longitude, the wavelet s coe 120e 180 10w sow o
power spectrum is computed using the Morlet wave- Fic. 10. (a) Power Hovmoller of 2-8-yr averaged wavelet
let, and the scale-averaged wavelet power over thedwer in SLP. The original time series at each longitude is the
8-yr band is calculated from (24). The average wavgerage SLP between 5° and 15°S. The contour interval is 8.1 mb
let-power time series are combined into a two-dimehke thick contour is the 95% confidence level, using the
sional contour plot as shown in Fig. 10a. The g50grresponding red-noise spectrum at each longitude; (b) the
confidence level is computed using the lag-1 autg)vﬂ]eer:ge of (a) over all longitudes; (c) the average of (a) over all
correlation at each longitude and (26). '

Several features of Fig. 10 demonstrate the useful-
ness of wavelet analysis. Fig. 10c shows the time-av-
eraged 2-8-yr power as a function of longitude. Brogdwer in the 1915-30 period. The generally low power
local maxima at 130°E and 130°W reflect the powebserved in Figs. 1 and 8 between 1930 and 1950
associated with the Southern Oscillation. This longnrainly reflects a lack of power in the Australian re-
tudinal distribution of power is also observed in thgion, with the eastern Pacific having some significant
2-8-yr band for Fourier spectra at each longitude (rfaictuations in the 1940s. The large zonal-scale fluc-
shown). The zonal average of the power Hovmoéllarations in both regions return in the 1950s, with the
(Fig. 10b) gives a measure of global 2—-8-yr varians&rongest amplitudes after 1970. The diminished
in this latitude band. Comparing this to Fig. 8, one caower after 1990 is within the COIl, yet may reflect
see that the peaks in zonal-average power are assih&-changes in ENSO structure and evolution seen in
ated with the peaks in Niflo3 SST variance, and, henaxent years (Wang 1995).
the 2—8-yr power is dominated in this latitude band by
ENSO. c. Cross-wavelet spectrum

With the power Hovmodller in Fig. 10a, the tempo- Given two time serieX andY, with wavelet trans-
ral variations in ENSO-associated SLP fluctuatioierms\W¥(s) andWY(s), one can define theross-wave-
can be seen. While the low power near the date lile¢ spectrunasWX'(s) = WX(s)W¥'(s), whereW" (s) is
region is apparent throughout the record, the hige complex conjugate &/Y(s). The cross-wavelet
power regions fluctuate on interdecadal timescalespectrum is complex, and hence one can define the
From the 1870s to the 1920s, strong decadal fluctuaess-wavelet poweas|\W.(s)|.
tions in the 2—8-yr power are observed in the Austra- Confidence levels for the cross-wavelet power can
lian region. In contrast, the eastern Pacific fluctuatiobge derived from the square root of the product of two
are strong only through 1910 and appear to have littlei-square distributions (Jenkins and Watts 1968).
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Assuming both wavelet spectra gfalistributed with give a useful measure of coherence. This smoothing
v DOFs, the probability distribution is given by ~ would also seem to defeat the purpose of wavelet
analysis by decreasing the localization in time. Liu

92~ (1994) suggests plotting the real and imaginary parts
f,(2= [[VDZHKO(Z)’ (30) (the co- and quadrature-wavelet spectra) separately,
I_ZEED and also plotting theoherence phasealefined as

tarr* [C{ WX ()} D{WY(9)}H.

_ _ _ The co- and quadrature-wavelet spectra for the
wherezis the random variablé,is the Gamma func- Nifio3 SST and the SOI (not shown) do not appear to
tion, andK(2) is the modified Bessel function of orgive any additional information, especially in conjunc-
der zero. The cumulative distribution function is givefion with the coherence phase shown in Fig. 11d. The
by the integrap = £+ f () dz whereZ (p) is the con- shaded region in Fig. 11d shows where the phase dif-
fidence level associated with probabilgyGiven a ference between Nifio3 SST and the SOl is between
probabilityp, this integral can be inverted to find thggo° and 200°. It is well known that the Nifio3 SST
confidence leveZ (p). and the SOI are out of phase, yet this shows that the

If the two time series have theoretical Fourier spegme series are within20° of being 180° out of phase

tra Py andPy, say from (16), then the cross-wavelayer all periods between 2 and 8 yr. Furthermore, this

distribution is out-of-phase behavior is consistent with changes in the
cross-wavelet power, with periods of low variance, say
|WX(S)Wy* (s)| 7 (p) | between 1920 and 1960, associated with more random
LS00 2 RXRY,  (31) phase differences.
Ox0y

whereg, ando, are the respective standard deviation. Summary

Forv =1 (real wavelets, (95%) = 2.182, while for

v =2 (complex waveletsy, (95%) = 3.999. Wavelet analysis is a useful tool for analyzing time
Figure 11a shows the wavelet power spectrum sdries with many different timescales or changes in

Nifio3 SST using the Pauh 4) wavelet, while Fig. variance. The steps involved in using wavelet analy-

11b shows the wavelet power for the SOI. Note thsit are as follows:

the narrow width in time of the Paul gives better time

localization than the Morlet but poorer frequency I&) Find the Fourier transform of the (possibly padded)

calization. Finally, Fig. 11c shows the cross-wavelet time series.

power for the Nifio3 SST and the SOI and indicat@$ Choose a wavelet function and a set of scales to

large covariance between the time series at all scalesanalyze.

between 2 and 8 yr. The 95% confidence level wdp For each scale, construct the normalized wavelet

derived using (31) and assuming red-noise spectrafunction using (6).

(16) with a = 0.72 for Nifio3 SST and = 0.61 for 4) Find the wavelet transform at that scale using (4);

the SOI. 5) Determine the cone of influence and the Fourier
wavelength at that scale.
d. Wavelet coherence and phase 6) After repeating steps 3-5 for all scales, remove any

Another useful quantity from Fourier analysis isthe padding and contour plot the wavelet power
coherencedefined as the square of the cross-spectrum spectrum.
normalized by the individual power spectra. Thig) Assume a background Fourier power spectrum
gives a quantity between 0 and 1, and measures thge.g., white or red noise) at each scale, then use the
cross-correlation between two time series as a func- chi-squared distribution to find the 95% confidence
tion of frequency. Unfortunately, as noted by Liu (5% significance) contour.
(1994), this coherence is identically one at all times
and scales. In Fourier analysis, this problem is circum-For other methods of wavelet analysis, such as the
vented by smoothing the cross-spectrum before nor-

malizing. For wavelet analysis, it is unclear what SOEoftware and examples are available from the authors at URL:
of smoothing (presumably in time) should be done bap:/paos.colorado.edu/research/wavelets/.
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orthogonal wavelet transform, see Fargea. NINO3 SST

(1992). The results presented in section; ; VY GA AW g
4 on statistical significance testing areg 4<
presumably valid for higher-dimensional 5 %/ @5)
wavelet analysis (assuming an appropri-g 32 ==~ >
ate background spectrum can be chosen), 84

1960 1980 2000

1920

1940

1880 1900

but this has not been tested and is left to Time (year)

future research. More research is also, gusip sol

needed on the properties and usefulness vy L R it e ST TE T

of the cross-wavelet, wavelet coherenceg 2/ b 7o @ 14 L1 (g BNEA N -

and co- and quadrature spectra. S g 4\ 7o) D). Y (i
In the wavelet analysis of Nifio3 sea2 15/ %~ N -7 N T e b

surface temperature, the Southern Oscil® g4} XSl e PR vy, B

lation index, and the sea level pressure, 1880 1900 1920 1940 1960 1980 2000

it was found that the variance of the El Time (year)

Nifio—Southern Oscillation changed on ¢ NMNO3 SST [ GMSLP SOl

interdecadal timescales, with a period ofg 3. [ 1 hefwa alpta b oll ) R ﬁ”ﬁ“glfﬁ

low variance from 1920 to 1960. Using £ 4/ - NAE) N RS WY

both the filtered 2—8-yr variance and the 3 o S ANN N : T e AN

cross-wavelet power, the changes in? 2421 28 M SO

Nifio3 SST variance appear to be well s 1900 PP T 1960 1980 2000

correlated with changes in the SOI. The Time (year)

SLP power Hovmdller suggests that d.
these changes are planetary in scale,
while Torrence and Webster (1997) useg
wavelet analysis to show that inter- >
decadal changes in ENSO are also relateg
to changes in Indian monsoon variance.”
Further studies are necessary to deter-

mine the extent and possible causes of N .
these interdecadal changes. Fic. 11. (a) The wavelet spectrum for the Nifio3 SST using the Pawl4(
. . wavelet. The contours are at normalized variances of 2, 5, and 10, while the thick

Itis h_oped thatthe ana'IyS|s prgsentec ntour is the 95% confidence level (red naise 0.72). (b) same as (a) but for
here will prove useful in studies ofihe GMSLP SOI (red noise = 0.61): (c) the cross-wavelet power for the Nifio3
nonstationarity in time series, and th&ST and the SOI. Contours are at 2, 5, and 10, while the thick contour is the 95%
addition of statistical significance testsonfidence from (31), with the red noise given in (a) and (b); (d) the phase
will improve the quantitative nature 0fdifference between Nifio3 SST and the SOI, with the filled contour enclosing

gions between 160° and 200°.

1880 1900 1920 1940 1960 1980 2000
Time (year)

wavelet analysis. Future studies using
wavelet analysis can then concentrate on
the results rather than simply the method. References
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