ELECTRODYNAMICS III ALL PROBLEMS 2017
LL2 Section 52
1. Derive (52.12), (52.14), (52.18), (52.19).
2. Describe the quantization of EM field and how we get from waves to photons (see LL5 secs 2,3).
[bookmark: _GoBack]LL2 Section 53
1. What takes the place of the eikonal in the transition from quantum mechanics to classical mechanics, see LL3, secs 6 and 17.
2. Compare Maupertius’s and Fermat’s principles. see LL1, sec 44.
LL2 Section 54
1. Prove that parallel incident rays on the outer regions of a spherical concave mirror cross the optical axis after reflection at a point inside the paraxial focal point.  Draw some rays and sketch the caustic.
2. Draw principal radii of curvature for an off axis surface element on a spherical mirror.  What are the principal radii for this element?
3. Find in a math book where it discusses principal radii of curvature for surfaces? Is it necessary for the principal arcs of curvature (as shown by segments ac, bd in Landau)?
LL2 Section 55
LL2 Section 56
1. Find the focal distance for image formation with the aid of two axially-symmetric optical systems whose axes coincide. (Landau Problem)
2. Do the experiment to check the results of the previous problem.
LL2 Section 57
1. Show that for broad bundles of rays, image formation for transverse and longitudinal elements of an object cannot be achieved simultaneously, i.e. that conditions (57.2) and (57.3) are incompatible in general.
LL2 Section 58
1. Determine the order of magnitude of the smallest width of a light beam produced from a parallel beam at a distance l from a diaphragm.  If the wavelength is 500 nm and the distance is l=20 cm, what is the smallest achievable spot and what is the smallest useful aperture of the diaphragm.
LL2 Section 59
1. Determine the distribution of the light intensity in the neighborhood of the point where the ray is tangent to the caustic. (Landau problem)
LL2 Section 60
1. Devise an experiment to observe Fresnel diffraction.
2. What happens to Fresnel diffraction pattern if Dq and Dp go to infinity?
LL2 Section 61
1. Landau problem 1
2. Landau problem 2
3. Landau problem 3
4. What is the angle at which the first non-central maximum occurs for Fraunhofer diffraction from a slit of width 2a for light of wavenumber k?
5. For the Fraunhofer diffraction pattern of a single slit, what is the ratio in the intensities for the central maximum and the first non-central maximum? 
6. Check the predictions of the previous problem by experiment.  Use visible laser, chopper, slit, silicon detector, and oscilloscope.
7. The footnote on p.154 section 61 gives the condition for when a slit of width a gives Fresnel or Fraunhofer diffraction pattern.  For a wavelength of 632 nm and Dp = Dq = 10 cm, what is the cross-over slit width a between the two cases? 
8. Design an experiment to observe the transition from Fresnel to Frauenhoffer diffraction and to measure the intensity distribution.

Vol. 8 sec. 64.  Excitation of currents by acceleration
Landau Problem 2.  (requires doing also section 63 Landau Problem 3).
1. Show [image: ]
2. Find original papers on the Stewart-Tolman effect and summarize how the experiment was performed and the effects observed.  Find one other more recent paper that cites ST and summarize.
3. For a loop of 1-mm-radius gold wire, who much linear acceleration is needed for each length element to produce a current of 1 nA.  Compare to gravity.  If the radius of the loop is 10 cm and it starts from rest, how many rpm is there for this acceleration after 1 s. 
4. What magnitude of current flows in a 1 mm radius Au wire formed in a loop of radius b = 10 cm which is stopped from  = 1000 rpm within 1 ms?   

Section 87.  Surface impedance of metals
Landau Problem
1. What is the conduction electron mean free path for Cu at 300 K?  At what wavelength does the relation  = ) become invalid?  (You will need the expression for electromagnetic penetration depth in SI units.)
2. Show that for non-magnetic metals, the imaginary part of the surface impedance is negative.  
3. Derive the expression (87.13) for reflectance R| in both Gaussian and SI untis.
4. What is the normal incidence reflectivity of a superconductor and how does it depend on wavelength?
5. Find the minimum value of R|| (87.16) and the angle 0 where this minimum occurs in terms of surface impedance.
6. Find the complex surface impedance for a metal from a measurement of normal incidence reflectance and the minimum reflectance angle (87.16) for R||.
7. From experimental complex surface impedance data for a metal, determine the complex permittivity in the optical range.  
8. Use the permittivity spectra for gold to determine the complex surface impedance and the normal incidence reflectivity at wavelengths of 1 m and 100 m. (You need to use the polar form of a complex number, you have to distinguish one correct solution out of 4 possibilities, and use these data from “Longwave plasmonics on doped silicon and silicides,” R. Soref, R. E. Peale, and W. Buchwald, OPTICS EXPRESS 16, 6507 (2008).)[image: ]

9. For gold at 1 m wavelength, at what angle of incidence is the reflectivity a minimum.  Consider both polarizations and use the complex surface impedance found in the previous problem.


Vol. 8 sec. 88. The propagation of waves in an inhomogeneous medium
Landau Problem:  Surface Plasmon Polariton wavefunction and dispersion relation
1. Work through the derivation of the wavefunction (vol. 3, section 46, Eq. (46.9)) for a particle in 1D motion in the quasiclassical case. 
2. Show that the E-wave solution 88.7 is the same as for 1D quantum mechanical motion in a homogeneous external field, U = Fx.  See vol. 3 section 24.
3. Derive Eq. (88.8).  See v. 3, section 47 and problem 2 above.
4. Work through the derivation in v.3 Appendix b on the Airy function.
5. The carrier density in the ionosphere ranges from 103 to 106 cm-3.  What range of plasma frequencies does this correspond to in MHz?  Take the mass of the carriers to be the electron mass.  The Height of the ionosphere ranges from 50 to 1000 km.  What rf pulse round trip times does this correspond to?  
6. Check that H1 and H2 (p307) are approximate solutions to 88.10) as z approaches zero.
7. Near the point z = 0 where  = 0, the H-wave solution is H = H0(1+(1/2)a2 log(z)).  For  = 2, plot the Re and Im parts of the second term about z = 0.  What is the limit of H as z goes to zero?
8. Derive (88.11).
9. Consider a surface plasmon polariton (SSP) at the interface between air and silver.  Plot the dispersion curve  vs. k using the permittivity spectrum given in the figure from Cleary et al. (2010) below. Ignore the imaginary part ”.  Also plot the “light line”  = ck.
10. Show for an H-wave that <Sz>t = 0 for z > 0 and <Sz>t > 0 for z < 0, where  = 0 on the plane z = 0.  
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Section 90.  Resonant cavities.  
Landau Problem 1.
1. Derive the first unnumbered equation after (90.4).
2. Derive the last equation on page 311, i.e. the 2nd unnumbered equation after (90.7).  
3. Prove the identity at the bottom of page 311.
4. Derive the first and second lines on p. 312.
5. Show <Sn>t = c’|Ht|2/8

Section 91.  Waveguides
1. Derive (91.1)
2. Derive (91.2)
3. Derive (91.4) for H waves.
4. Derive 91.5)
5. Show that condition (91.6) on the circumference of the waveguide cross section ensures that the boundary condition Hn = 0 is satisfied.
6. Derive the equations after (91.8) for the intensity of an E-wave and equation (91.9).
7. Derive the total energy flux for H-waves, the equivalent of (91.9) for E-waves.
8. For principal waves, show that E = -grad2, 2 = 0, and  = constant on the boundary.
9. Derive (91.13)
10. Derive (91.14)
11. Derive (91.15)
12. Find the paper by Rayleigh 1897 on waveguides and summarize in 1 page.

Section 92.  Scattering of electromagnetic waves by small particles
1. Find the paper by Rayleigh 1871 related to this section.  Summarize in 1 page.
2. Derive (92.3)
3. Derive (92.4)

Section 93.  Absorption of electromagnetic waves by small particles
1. Derive (93.2)
2. Derive (93.4)
3. Derive (93.5)
4. Derive (93.5) by the second method (Poynting vector, superconductor).
LL8 section 103
1. Derive (103.8)
2. If there is extraneous charge density ext(r) that varies with r, then  = pol + ext, E, D, ext and pol all vary spatially.  Each can be expanded in a Fourier series with spatially oscillating factors eik.r.  Each Fourier component is related by (103.7): D(k) = (k) E(k).  Show that (k)= ext(k)/(k) = ext(k)/(k).  pol = polarization charge density.  
3. Derive the Thomas-Fermi dielectric function (=0,k) = 1 + ks2/k2, where ks is the screening length, as follows.  Consider a uniform gas of electrons of charge density –n0e and a uniform positive charge background n0e.  Add some fixed non-uniformly distributed extraneous charge ext.  One of the Fourier components of the new fixed background is +(x) = n0e + ext(k)sinkx.  The second term will perturb the free electron gas due to a potential ext given by Poisson’s equation.  The corresponding Fourier component of the perturbed free electron charge density is -(x) = - n0e + pol(k) sinkx, where pol is the polarization charge density induced by ext.  Find pol(k) in terms of ext (k) and (=0,k).  Use the fact that the electrochemical potential energy = F(x) – e (x) is constant everywhere for the electron gas.  F = (hbar2/2m)(32n)2/3.  Use results of Problem 2.
4. Write the Thomas-Fermi screening length in terms of the electron concentration and Bohr radius.  Is this a strong function of concentration?  What is the screening length for a typical metal with electron concentration 1022 cm-3?  For a heavily-doped semiconductor with n = 1018 cm-3?
5. The static limit for the permittivity of an electron gas is given by the Thomas-Fermi dielectric function, see Problem 3.  Use (83.4) to derive a dispersion relation valid for low frequency waves when the wavevector is not small.  What is the large k limit?  How does it compare to the dispersion for electromagnetic waves in vacuum?
6. Derive the screened Coulomb potential as follows.  An excess point charge +e placed into a conductor is an extraneous charge in a sea of free electrons.  The potential of the bare charge is ext(r) = e/r, but the free electrons shield the extraneous charge so that the total potential (extraneous positive charge plus cloud of shielding electrons) is (r).   Find (r) as follows.  Write the Poisson equation for ext.  Write ext(r) as a Fourier integral.  Use the Fourier representation of the delta function (LL2, sec 51).  Find ext(k).  Use the results of problems 2 and 3 to find the total potential (r).  Graphically compare the screened and unscreened potentials of an electron in the field of unit positive charge with unity screening length.
7. Sound waves in are longitudinal compression waves of neutral particles.  No electromagnetic fields are involved.  All nearby particles move with the same phase.  In a solid, there are matter waves where adjacent particles move with the same phase (acoustic phonons) or opposite phase (optical phonons).  Besides waves with longitudinal displacements with respect to propagation direction (LA, LO), there are also waves with transverse displacements (TA, TO).  If the solid is made up of different types of atom, bonding has an ionic component, and matter waves must have a co-propagating electromagnetic wave.  An LA sound wave in a solid therefore is associated with a purely-electric longitudinal wave.  If the solid is a conductor, charges move in this electric wave with spatial dispersion.  Ions are also accelerated in this field, which provides a restoring force.  All these effects combine to give a permittivity (,k).  Use LL8 section 84.  Argue that ions accelerate as though free (see LL8 section 78) and that the Thomas-Fermi permittivity (Problem 3) applies to the electrons to find the dispersion relation  vs k and the sound wave velocity in terms of the Fermi velocity (F = (1/2) m vF2) and the relevant masses.
8. Show from (103.7) and (103.12) for an isotropic homogeneous medium with spatial dispersion that a longitudinal electric wave has D = lE and a transverse electromagnetic wave has D = tE.
LL8 section 106
1. An electromagnetic plane wave in the far infrared can couple to transverse optical phonons in a non-homopolar crystal.  The resulting resonant polarization changes the dispersion of the photon from  = ck.  The coupled photon-phonon is called a polariton.  Use the electromagnetic wave equation in a homogeneous linear medium to find a relation between E, P, , and k.  Derive a second equation for these quantities from the interaction of photon and phonon, by considering the differential equation for a driven simple harmonic oscillator with natural frequency TO and reduced mass M, where the photon field provides a periodic driving force.  P = dipole moment per unit volume.  At low wavevectors, the TO phonon frequency TO is independent of wavevector.  From the two equations derive the dispersion relation  vs. k and show that there are two branches.  Plot both branches of the dispersion curve hbar  vs hbar ck, in units of eV vs. eV.  Indicate asymptotes and intercepts and identify their significance.  Assume GaP with hbar TO = 0.0455 eV, density 4.14 g/cm3, molar mass 101 g.  
2. Show that the frequency dependent permittivity for an insulating ionic crystal driven by a transvers electromagnetic wave is () = () + [(0) – ()] / (1-2/T2).  The natural frequency of oscillation for the ionic motion is T.  Ionic reduced mass is M, ionic displacement = u, polarization P = Nqu = dipole moment per unit volumne, N = number of ion pairs, q their charge, u their normal mode displacement, () = n2 = contribution to the permittivity from ion cores, n = refractive index.  
3. Use result of problem 2 and (83.7) to find a plot two branches of the polariton dispersion curve hbar  vs hbar ck for GaP.  hbar TO = 0.0455 eV, (0) = 10.18, n = 3.2.  Why is the result different than in Problem 1?
4. Raman scattering of a beam of monochromatic light excites transverse optical phonons (Stokes scattering).  Energy and momentum of photons must be preserved.  Show that usual Raman scattering with detector at 90 deg from the incident beam results only in phonons with large wavevector, which are far from the polariton region.  What is the nature of the ionic motion when phonon momentum has it largest physically meaningful value?  Plot dispersion curves of light and optical phonons for GaP on the same graph with the same scale.  
5. How does one observe a polariton?  Analyze and present C. H. Henry and J. J. Hopfield, “Raman Scattering by Polaritons”, Phys. Rev. Lett. 15, 964 (1965), as follows.  Associated with a TO phonon are oscillating dipoles at the TO frequency, so there has to be an EM wave at the same frequency.  The photon energy for this EM wave is small, so its wavevector is also small ( = ck while c is large). The interaction resonance between the TO phonon and the EM wave is the polariton, which distorts the dispersion curves of the two excitations at their crossing point.  Small angle Raman scattering measures the frequency of the Stokes scattered light S as a function of angle.  Show that the wavevector of the excited phonon polariton is q  [(k/)=Lq2 + kLkSq2] where q = L-S, kL = k(L) = n(L) L/c, etc.  Then from each pair of measured S and q, we can get a point (q,q) on the polariton dispersion curve.  What happens if there is no normal dispersion in the refractive index? 
LL8 section 113
1. An extraneous charged particle moves through a medium with non-relativistic velocity v.  Show that the electric induction at the field point r is –grad (e/|r – vt|).  (Put the origin at the initial position of the charge.)
2. Time average (80.2) for the instantaneous power distribution per unit volume by a changing polarization due to the passage of a charged particle, use (103.7), and assume D(,k) is real if E(,k) is real to show that the mean quantity of heat evolved per unit time and volume is 	Q = (-1/8)  Im(1/) D2(,k) for one spatio-temporal Fourier component of the field.  
3. Plot the energy loss function -Im(1/) as a function of 1) energy and 2) wavelength over the near UV to near IR spectral range for gold.  See refractive index.info for downloadable data and use section 83 to get (’,”) from (n,).  
4. What is the maximum possible momentum that can be transferred to an electron in a crystal by an incident electron in a beam with 20 kV accelerating voltage?  Does the corresponding wavevector q0 satisfy 0/v << q0 << 1/a? Here 0 is some mean frequency corresponding to the motion of the majority of electrons in the atom, v is the velocity of the electron in the incident beam, and a is the atomic dimension.  Based on the definition of q, can it ever have this large value?
5. Suppose that the energy lost by electrons impinging on a solid surface is all converted to light, with each frequency component in the stopping power integral begin converted to photons of the corresponding frequency.  Let q0 = 1/10a and a = 0.3 nm.  Let the incident electron energy bet 20 keV, as in an ordinary SEM.  Convert I() to I(), with the requirement that I()d = I()d, to show that I() = (const/3)(-Im[1/]) ln[(nm)/68].  The second factor is the energy loss spectrum from problem 3.  
6. Plot I() for gold from  = 300 to 1000 nm, using the results from problems 5 and 3.  Does the spectrum look like the cathodoluminescence spectrum of gold in Cathodoluminescence study of silver and gold lamellar gratings , Janardan Nath, Casey Schwarz, Yuqing Lin, Evan Smith, R. E. Peale, L. Chernyak, Walter R. Buchwald, Jane Lee, Proc. SPIE 8031 - 101 V. 5 (2011)?
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Pd,Si damping parameter y= 1/t of only 0.03 eV [7] results in a calculated Drude curve that is
significantly lower than for gold in the mid- and far-infrared. The large discontinuity between
empirical- and Drude-based permittivity €” values emphasizes the lack of experimental
infrared data for the silicide.
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gation as well as the characteristic penetration of the SPP
electric field into the dielectric (in this case air) and into
the conducting film were determined. For simplicity, we
examined the asymmetric dielectric/conductor structure,
although in practice the symmetric conductor/dielectric/
conductor and dielectric/conductor/dielectric ~ SPP
waveguides offer superior performance [28]. The results
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Fig. 1. Real and imaginary part of permittivity for Ag from el-

lipsometry data and data from [30]. Dashed curves show Drude
fits.
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well indexed (16 peaks) with polycrystalline platinum sili-
con (125 wt. % Si), but with a d-spacing 1-2% smaller ac-
cording to the standard ICDD 7-251. The paladium-based
film exhibited only the (400) and (800) planes of paladium
silicide, indicating strong preferred orientation, and also

SUILS CULIPAIEU 10 PUWUSE UL AUUIUIL SIAGALUS (iieiias
tional Center for Diffraction Data, ICDD). All samples
were measured using the CuKa; and CuKaj lines at
wavelengths of 1.5406 A and 1.5444 A respectively, over
an angular range of 20° to 80° with an angular resolution
of 0.025°. All samples showed an intense peak identified
as the (004) crystal plane of the bulk silicon substrate, as
well as a weak (002) peak. The platinum-based film was
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