
Chapter 7      

Impulse and Momentum • To study impulse and momentum.
• To understand conservation of momentum.
• To study momentum changes during 

collisions.
• To understand center of mass and how forces 

act on the c.o.m.
• To apply momentum to rocket propulsion.

Goals for Chapter 7

The collision time between a bat 
and a ball is very short, often less 
than a millisecond, but the force 
can be quite large.

The time interval during 
which the force acts is t, 
and the magnitude of the 
average force is F.

When the bat strikes the ball, the magnitude of the force exerted 
on the ball rises to a maximum value and then returns to zero The impulse of a force is the product of the average 

force and the time interval during which the force acts:

t FJ


Impulse is a vector quantity and has the 
same direction as the average force.
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SI unit:

• Collisions typically involve 
interactions that happen quickly.

The balls are in contact for a very short time.
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• During this brief time, the forces 
involved can be quite large
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Force and Impulse

t FJ
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The linear momentum of an object is the product of the 
object’s mass times its velocity:
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Momentum of a particle is defined as the product of 
its mass and velocity

Momentum (magnitude) is related to kinetic energy

• Momentum components
– px = m vx and py = m vy

– Applies to two-dimensional motion as well
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Relation between Impulse and Momentum  (Newton 2nd) 
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When a net force acts on an object, the impulse of this 
force is equal to the change in the momentum of the object

impulse

IMPULSE-MOMENTUM THEOREM

impulse = change in momentum!
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Impulse is a vector quantity; 
SI Unit:   N s   or     kg m / s

Define average force

or:

• We can use the notion of impulse to define “average 
force”, which is a useful concept.

Impulse and average force

such that (even if
is not constant), 
impulse is given by
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A baseball (m = 0.14 kg) has an initial velocity of  vo = - 38 
m/s as it approaches a bat. The bat applies an average force  
that is much larger than the weight of the ball, and the ball 
departs from the bat with a final velocity of vf = 58 m/s .  
(a) Determine the impulse applied to the ball by the bat.   
(b) Assuming that the time of contact is  t = 1.6 × 10-3 s, 
find the average force exerted on the ball by the bat. 

Example: A Well Hit Ball 



Rain comes down with a velocity of -15 m/s and hits the roof of a 
car.  The mass of rain per second that strikes the roof of the car is 
0.060 kg/s.  Assuming that rain comes to rest upon striking the 
car, find the average force exerted by the rain on the roof.
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Example 2: A Rainstorm 
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Neglecting the weight of the raindrops, 
the net force on a raindrop is simply the 
force on the raindrop due to the roof.

Fon-the-roof = -0.90 F     (Newton’s third law)

Instead of rain, suppose hail is falling.  Unlike rain, hail usually
bounces off the roof of the car.

Conceptual Example: Hailstones versus Raindrops 

If hail fell instead of rain, would the force be smaller than, 
equal to, or greater than that calculated previously ?
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For a raindrop, the change in velocity is from  (downward) to zero. 
For a hailstone, the change is from  (downward) to  (upward).

Thus hailstones have a larger tF


• The most important factor is the collision time or 
the time it takes the person to come to a rest
– This will reduce the chance of dying in a car crash

• Ways to increase the time
– Seat belts

– Air bags

 The air bag increases the time of the collision and 
absorbs some of the energy from the body

Impulse applied to auto collisions
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WORK-ENERGY THEOREM 
CONSERVATION OF ENERGY

IMPULSE-MOMENTUM THEOREM ???

Apply the impulse-momentum theorem
to the midair collision
between two objects…..

Conservation of Linear Momentum 

Internal forces – Forces that objects 
within the system exert on each other.

External forces – Forces exerted on 
objects by agents external to the system.

e.g.   Weight=W
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Conservation of Linear Momentum 
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The internal forces cancel out.

Conservation of Linear Momentum 

Consider system:
both objects involved



If the sum of the external forces is zero, then
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CONSERVATION OF LINEAR MOMENTUM
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Principle of Conservation of Linear Momentum
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The total linear momentum of an isolated system is constant
(conserved).  An isolated system is one for which the sum of the 
average external forces acting on the system is zero.
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 For a system of particles the total 
momentum P is the vector sum of 
the individual particle momenta:

Definition of Total Momentum for a System of Particles
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• The momentum of each object will change

• The total momentum of the system remains 
constant if there are no external forces
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A freight train is being assembled in a switching yard.  Car 1 has a mass 
of m1 = 65 × 103 kg and moves at a velocity of v01 = +0.80 m/s.  Car 2, 
with a mass of m2 = 92 × 103 kg and a velocity of v02 = +1.3 m/s, 
overtakes car 1 and couples to it.   Neglecting friction, find the common 
velocity vf of the cars after they become coupled.

Example: Assembling a Freight Train 

=

A marksman holds a 3.00 kg rifle 
loosely, allowing it to recoil freely 
when fired, and fires a bullet of 
mass 5.00 g horizontally with a 
speed vB = 300 m/s. What is the 
recoil speed of the rifle ?

Example: Recoil of a rifle 
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A model rocket travels as a projectile in a parabolic path after its 
first stage burns out. At the top of its trajectory, where its velocity 
points horizontally to the right, a small explosion separates it into 
two sections with equal masses. One section falls straight down, 
with no horizontal motion. What is the direction of the other part 
just after the explosion ?

A.  Up and to the left

B.  Straight up

C.  Up and to the right

before

after

Concept Test:   Exploding Projectile 
A box with mass m = 6.0 kg slides with speed v = 4.0 m/s across a 
frictionless floor in the positive direction of an x axis. It suddenly 
explodes into two pieces. One piece, with mass m1 = 2.0 kg, moves 
in the positive x-direction with speed v1 = 8.0 m/s. 

What is the velocity of the second piece, with mass m2 = 4.0 kg ?

Example: Momentum Conservation 



Starting from rest, two skaters push 
off against each other on ice where 
friction is negligible. One is a 54-kg 
woman and one is a 88-kg man.  The 
woman moves away with a speed of 
+2.5 m/s.  Find the recoil velocity
of the man.
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Example:  Conservation of Linear Momentum - Ice Skaters

1. No, it will not move at all

2. Yes, it will move away from the shore

3. Yes, it will move towards the shore

Note:  Since momentum is conserved in the boy-raft system and neither was 
moving at first, the raft must move in the direction opposite to the 
boy’s. 



Concept Test:   Conservation of Momentum

A boy stands at one end of a floating raft that is stationary 
relative to the shore. He then walks to the opposite end, 
towards the shore. Does the raft move (assume no friction)? 

In Collissions Total Momentum is Conserved

– Momentum is conserved for the system of objects

– The system includes all the objects interacting with each other

– Assumes only internal forces are acting during the collision

– Can be generalized to any number of objects

• Mathematically (for two objects):
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– A collision may be the result of physical contact between 
two objects

– “Contact” may also arise from the electrostatic interactions 
of the electrons in the surface atoms of the bodies

In collisions, we assume that external forces either 
sum to zero, or are small enough to be ignored.  
Hence, momentum is conserved in all collisions.

• Inelastic collisions
– Kinetic energy is not conserved

• Some of the kinetic energy is converted 
into other types of energy such as heat, 
sound, work to permanently deform an 
object

– Perfectly inelastic collisions occur when 
the objects stick together

• Not all of the KE is necessarily lost

• Momentum is conserved in any collision

• Elastic collisions

– both momentum and kinetic energy
are conserved

Most collisions fall between elastic 
and perfectly inelastic collisions

Types of Collisions

• Elastic means that kinetic energy is conserved as well 
as momentum.

Initial Final

Elastic Collisions

• This gives us more constraints

– We can solve more complicated problems!!

– Billiards (2-D collision)

– The colliding objects
have separate motions
after the collision as 
well as before.

• First:  simpler 1-D problem

Inelastic and Elastic Collisions
A completely inelastic collision An elastic collision



1. Decide which objects are included in the system.

2. Relative to the system, identify the internal and 
external forces.

3. Verify that the system is isolated.

4. Set the final momentum of the system equal to its 
initial momentum.

Remember that momentum is a vector.

Applying the Principle of Conservation of Momentum

• Set up a coordinate axis and define the velocities with respect 
to this axis

– It is convenient to make your axis coincide with one of the 
initial velocities

• In your sketch, draw all the velocity vectors with labels 
including all the given information

Problem Solving for One-Dimensional Collisions

• Draw “before” and “after” sketches

• Label each object 

– include the direction of velocity

– keep track of subscripts

Problem Solving for One-Dimensional Collisions

• The objects stick together

• Include all the velocity directions

• The “after” collision combines the masses

• Write the expressions for the momentum 
of each object before and after the collision

– Remember to include the appropriate signs

• Write an expression for the total momentum before and after 
the collision --- momentum of the system is conserved

Sketch for perfectly inelastic colllision

• If the collision is inelastic, solve the momentum equation for 
the unknown --- Remember, KE is not conserved

• If the collision is elastic, you can use the KE equation to solve 
for two unknowns

• Suppose, for example, v2i=0. 
Conservation of momentum becomes
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Perfectly Inelastic Collisions
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• What amount of KE lost 
during collision?
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lost in heat and sound …

Perfectly Inelastic Collisions
The mass of the block of wood is 2.50-kg 
and the mass of the  bullet is 0.0100-kg.  
The block swings to a maximum height of 
0.650 m above the initial position.
Find the initial speed of the bullet.

Example:  A Ballistic Pendulum

Apply conservation of momentum to the collision:
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Applying conservation of energy to the swinging motion:
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• Both momentum and kinetic energy are conserved

• Typically have two unknowns
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Elastic Collisions

• Solve the equations 
simultaneously

• Incoming and outgoing velocities are very mass dependant

mass m2 initially at rest
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Elastic Collision

• For a general collision 
of two objects in three-
dimensional space, the 
conservation of 
momentum principle

… implies that the total momentum of the system in each 
direction is conserved
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Two-dimensional Collisions

– Use subscripts for identifying the object, initial and final, 
and components

A Collision in Two Dimensions
Use momentum conservation to determine 
the magnitude and direction of the final 
velocity of ball 1 after the collision.
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The center of mass is a point that represents the average 
location for the total mass of a system.
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Center of Mass

Center of Mass Coordinates

• The coordinates of the 
center of mass  are

=  M is the total mass 
of the system 21
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In an isolated system, the total linear momentum does not change, 
therefore the velocity of the center of mass does not change.

Velocity of Center of Mass
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Example:  Center of Mass Motion

vcm = const. In isolated system

Motion of the Center of Mass

• The system will move as if an 
external force were applied to a 
single particle of mass M located at 
the center of mass


