Chapter 7

Impulse and Momentum

Goals for Chapter 7

* To study impulse and momentum.
» To understand conservation of momentum.

 To study momentum changes during
collisions.

To understand center of mass and how forces
act on the c.o.m.

To apply momentum to rocket propulsion.

When the bat strikes the ball, the magnitude of the force exerted
on the ball rises to a maximum value and then returns to zero
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The time interval during
which the force acts is At,
and the magnitude of the
average force is F.

The collision time between a bat
and a ball is very short, often less
than a millisecond, but the force
can be quite large.

DEFINITION OF IMPULSE

The impulse of a force is the product of the average
force and the time interval during which the force acts:
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Impulse is a vector quantity and has the
——"  same direction as the average force.

Stunit: ~ newton -seconds (N -s)

Momentum transfer (collision) ‘timescales’

* Collisions typically involve
interactions that happen quickly.

« During this brief time, the forces
involved can be quite large
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The balls are in contact for a very short time
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DEFINITION OF LINEAR MOMENTUM

The linear momentum of an object is the product of the
object’s mass times its velocity:

— —
Momentum p is a vector quantity; p =mv
a particle’s momentum has the same

direction as its velocity v.

Sl unit:
{ kilogram- meter/second (kg - m/s)
m 5//77
j TJ =mv
X
o

Relation between Impulse and Momentum (Newton 2nd)

Linear Momentum

Momentum of a particle is defined as the product of
its mass and velocity

p=mv

* Momentum components
- Ppx=myv,andp,=myv,
— Applies to two-dimensional motion as well
Momentum (magnitude) is related to kinetic energy
1 2
K=>mv?=2_
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IMPULSE-MOMENTUM THEOREM

When a net force acts on an object, the impulse of this
force is equal to the change in the momentum of the object

_—

_— | final momentum _
initial momentum

impulse (ZE) At=mv, —mv,

A p F At Impulse is a vector quantity;

SlUnit: Ns or kgm/s

impulse = change in momentum!

Impulse and average force

« We can use the notion of impulse to define “average
force”, which is a useful concept.

Or, we can replace the varying force

Fy with a constant average force .’ av.x and
. calculate the impulse as J, EE 1
Define average force
such that (even if F, Arem = Bttt
; i l=
is not constant), e

impulse is given by
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ExampIE' A Well Hit Ball

< Abaseball (m = 0.14 kg) has an initial velocity of v, =- 38
(_) m/sasitapproaches a bat. The bat applies an average force
that is much larger than the weight of the ball, and the ball
departs from the bat with a final velocity of v =58 m/s.
(a) Determine the impulse applied to the ball by the bat.
(b) Assuming that the time of contactis At=1.6 x 103,
\_T_,__, find the average force exerted on the ball by the bat.

I =m VE—m V¥ g
= (0.14 kg)(+58 mfs) — (0.14 kg) (—38 m/s)
2 Final momentum Irutial momentum
D =[F 134 kg mhs
F oo _ +134kg-mis

At 1.6x107%

=|+8400 N




Example 2: A Rainstorm

Rain comes down with a velocity of -15 m/s and hits the roof of a
car. The mass of rain per second that strikes the roof of the car is
0.060 kg/s. Assuming that rain comes to rest upon striking the
car, find the average force exerted by the rain on the roof.

Ramodrcp -
(Z F) At=mv; —mv,

vﬂl Yp=0mis
Neglecting the weight of the raindrops,
the net force on a raindrop is simply the
force on the raindrop due to the roof.

= m,
At=mv, —my, == F=- (E]W
F=—(0.060kg/s) (~15m/s)=+0.90 N (force on the raindrop)

T

Fonthe-roof = “0.90 F (Newton's third law)

Conceptual Example: Hailstones versus Raindrops

Instead of rain, suppose hail is falling. Unlike rain, hail usually
bounces off the roof of the car.

If hail fell instead of rain, would the force be smaller than,
equal to, or greater than that calculated previously ?

Hailstone

For a raindrop, the change in velocity is from (downward) to zero.
For a hailstone, the change is from (downward) to (upward).

Thus hailstones have a larger |3 At

Impulse applied to auto collisions

» The most important factor is the collision time or
the time it takes the person to come to a rest
— This will reduce the chance of dying in a car crash

» Ways to increase the time

— Seat belts
- Air bags
[= Ap_m (vf _ vi)
I:av = . T .
At At

» The air bag increases the time of the collision and
absorbs some of the energy from the body

Conservation of Linear Momentum

WORK-ENERGY THEOREM &
CONSERVATION OF ENERGY

Apply the impulse-momentum theorem

my

to the midair collision
between two objects.....

Internal forces — Forces that objects A
within the system exert on each other. 4

External forces — Forces exerted on

objects by agents external to the system. e.g. Weight=w

Conservation of Linear Momentum

(CF) at=my,-my, S A
OBJECT 1
(Wl + Elz ) At=mV, -mV,,
OBJECT 2

(W2+E21)At:mz\7f2_mzvoz } \

(c) After collision

Conservation of Linear Momentum

Consider system:

(Wl +F, ) At=mV, —MVy o objects involved

(4 1t A 2 +E12 + '321)5[ = (m1Vf1 + szfz) (m1\701 + mzvoz)
b |
IElZ = _l_i21 Pf P,

The internal forces cancel out.




Principle of Conservation of Linear Momentum

my

(Vi + Vi, ) At =B, - B,

You o

(sum of average external forces) At

= Pf - Po o
If the sum of the external forces is zero, then 2
0-p-F, — B =P, . N\

CONSERVATION OF LINEAR MOMENTUM

The total linear momentum of an isolated system is constant
(conserved). An isolated system is one for which the sum of the
average external forces acting on the system is zero.

Definition of Total Momentum for a System of Particles

o For asystem of particles the total .. N N ~
momentum P is the vector sumof P =) p, = Zmivi
the individual particle momenta: i1 i1

P=Ps+Pg+Pc+... =MpVa+mgVg+mVg+..

Before collision

AP=A(n+Ps +Pe+) =Fu At @5 <20
(a)

my my

* The momentum of each object will change
After collision
¢ The total momentum of the system remains %y .~
— e

constant if there are no external forces
(b)

Example: Assembling a Freight Train

A freight train is being assembled in a switching yard. Car 1 has a mass
of m, = 65 x 10° kg and moves at a velocity of v, = +0.80 m/s. Car 2,
with a mass of m, = 92 x 10% kg and a velocity of vy, = +1.3 m/s,
overtakes car 1 and couples to it. Neglecting friction, find the common
velocity v; of the cars after they become coupled.

Example: Recoil of a rifle

fomtr—

(a) Before shooting (at rest)

R YB
P - —_
i — ——
i :_,_..cgz:.‘- — Py

(b) After shooting

A marksman holds a 3.00 kg rifle
loosely, allowing it to recoil freely
when fired, and fires a bullet of
mass 5.00 g horizontally with a
speed v = 300 m/s. What is the
recoil speed of the rifle ?

Vo2 "[ll Tr
2 my i B
(a) Before coupling (b) After coupling
miVa Vg _ (b mg)ve
Total momentum Total momentum
before collision after collision
vp = A E Py
£ = m v my

{65x103 kg)(O.SOmfs) } (92x103 kg)(l‘Bmfs) N

L1
(65 107 kg + 92 107 kg) ' 2

Br—PetPe
Before Pr =0
After Pr+Ps=0
mgVg +MgVy =0

Mg 0.005

Vg =—— .y =——=2.300=—0.50m/s.
m, 3.00

Concept Test: Exploding Projectile

A model rocket travels as a projectile in a parabolic path after its
first stage burns out. At the top of its trajectory, where its velocity
points horizontally to the right, a small explosion separates it into
two sections with equal masses. One section falls straight down,
with no horizontal motion. What is the direction of the other part

just after the explosion ?
System

before ]
A. Up and to the left = —P;-

B. Straight up
The system’s momentum is conserved:
(COUp and to the right Py+PB,=P

‘5 B o
after Py .
P/I

o

P

Example: Momentum Conservation

A box with mass m = 6.0 kg slides with speed v = 4.0 m/s across a
frictionless floor in the positive direction of an x axis. It suddenly
explodes into two pieces. One piece, with mass m; = 2.0 kg, moves
in the positive x-direction with speed v, = 8.0 m/s.

What is the velocity of the second piece, with mass m, = 4.0 kg ?
P, =F;
or my = myyy + myva.
Inserting known data, we find
(6.0 kg)(4.0 mfs) = (2.0 kg)(8.0 m/s} + (4.0 kv,
and thus v, = 2.0 m/s.

Since the result is positive, the second piece moves in the positive
direction of the x axis.




Example: Conservation of Linear Momentum - Ice Skaters

Concept Test: Conservation of Momentum

Starting from rest, two skaters push

off against each other on ice where

& I\} friction is negligible. One is a 54-kg
X woman and one is a 88-kg man. The
T woman moves away with a speed of
m ! m m +2.5m/s. Find the recoil velocity
pemte 1) of the man. 5 B
P, =P,
(a) Before
vz viL mlvfl + m2vf2 = 0
A, SV
i
4 ﬁ (54kg) (+ 2.59] -
an == y,=——~ 8/ 450
(b) After 88kg S

A boy stands at one end of a floating raft that is stationary
relative to the shore. He then walks to the opposite end,
towards the shore. Does the raft move (assume no friction)?

1. No, it will not move at all
(@Dyves, it will move away from the shore v/

3. Yes, it will move towards the shore

Note: Since momentum is conserved in the boy-raft system and neither was
moving at first, the raft must move in the direction opposite to the
boy’s.

In Collissions Total Momentum is Conserved

Types of Collisions

In collisions, we assume that external forces either
sum to zero, or are small enough to be ignored.
Hence, momentum is conserved in all collisions.
— Acollision may be the result of physical contact between
two objects
— “Contact” may also arise from the electrostatic interactions
of the electrons in the surface atoms of the bodies

» Mathematically (for two objects):

M, Vi + M, Vai = M, Vir + M, Var

— Momentum is conserved for the system of objects

— The system includes all the objects interacting with each other
— Assumes only internal forces are acting during the collision

— Can be generalized to any number of objects

* Momentum is conserved in any collision
» Elastic collisions
— both momentum and Kinetic energy
are conserved el

)
1
1
1
1
A
0
1
1
1

R

* Inelastic collisions
— Kinetic energy is not conserved
« Some of the kinetic energy is converted
into other types of energy such as heat,
sound, work to permanently deform an
object
— Perfectly inelastic collisions occur when i
the objects stick together ¥
« Not all of the KE is necessarily lost ‘
Most collisions fall between elastic ‘
and perfectly inelastic collisions

-

() Inelastic collision

LS

(¢) Completely inelastic collision

Elastic Collisions

« Elastic means that kinetic energy is conserved as well
as momentum.
 This gives us more constraints
— We can solve more complicated problems!!
— Billiards (2-D collision)
— The colliding objects /
have separate motions .
after the collision as ._'. .

well as before. N
Initial Final

 First: simpler 1-D problem

Inelastic and Elastic Collisions
A completely inelastic collision

An elastic collision

Velero® Springs

Uai A Upi Uai Upi

—/ N\ - —_— -
A- @ a3 A~ dr 3

(a) Before collision (a) Before collision

. . . Kinetic energy is stored as potential
The gliders stick together

energy in compressed springs.
A R j ] P 7 T _‘
e 4 -
(b) Completely inelastic collision (b) Elastic collision
The system of the two gliders has less kinetic The system of the two gliders has the same
energy after the collision than before it. Kinetic energy after the collision as before it.
vy

(c) After collision () After collision




Applying the Principle of Conservation of Momentum

1. Decide which objects are included in the system.

2. Relative to the system, identify the internal and
external forces.

3. Verify that the system is isolated.

4. Set the final momentum of the system equal to its
initial momentum.

Remember that momentum is a vector.

Problem Solving for One-Dimensional Collisions

Before collision

Sketch for perfectly inelastic colllision ‘
« The objects stick together W T

« Include all the velocity directions o
¢ The “after” collision combines the masses

After collision

Write the expressions for the momentum
Vv

of each object before and after the collision ® J,
- Remember to include the appropriate signs "

* Write an expression for the total momentum before and after
the collision --- momentum of the system is conserved

« If the collision is inelastic, solve the momentum equation for
the unknown --- Remember, KE is not conserved

 If the collision is elastic, you can use the KE equation to solve
for two unknowns

Perfectly Inelastic Collisions

Before collision

* What amount of KE lost
during collision?

B

\' m h -1— my )
KEbefore = 1 mlvlzi + E mZV; Vi Y2 -7-1/
2 2 — X
- %(1000 kg)(50m/s)’ =1.25x10°] @
1
KEaﬂev = E (m1 + mz)vfZ After collision
:%(2500 kg)(20m/s)? = 0.50x10°J O —
W v
my + my
AKE,, =0.75x10°J —

lost in heat and sound ...

Problem Solving for One-Dimensional Collisions

to this axis

— Itis convenient to make your axis coincide with one of the
initial velocities

« Inyour sketch, draw all the velocity vectors with labels
including all the given information

Before collision

— include the direction of velocity
- keep track of subscripts
After collision

e WY "\"2/
— —_—
v &

» Set up a coordinate axis and define the velocities with respect

» Draw “before” and “after” sketches /™ Y vai £
« Label each object ot

Perfectly Inelastic Collisions

* Suppose, for example, v,=0. Before collision

(a)
mv; +0=(m, +m,)v,
E.g., if m; =1000 kg, m, =1500 kg : After collision

h
y

(1000kg)(50m/s) + 0 = (2500kg)v, , (). i y)—

vr
4 A my + iy
_5x10 kg3 m/s _ 20m)s. R
25x10°%kg ———

f

y

Conservation of momentum becomes P P
Ly - Wy |
& Vii vo; @

M, Vy; +M,Vy = (M, +m,) Vv, o

Example: A Ballistic Pendulum

(@) S The mass of the block of wood is 2.50-kg
and the mass of the bullet is 0.0100-kg.
The block swings to a maximum height of
0.650 m above the initial position.
Find the initial speed of the bullet.

> [in Apply conservation of momentum to the collision:
-“nl
MyVey +MyVe, =MV + MV,
bh)
( N
N (ml + mZ)Vf =MVy
N f=0.650m

N
\,

N\

- | V- (m,+m,)v,
| 1 -

my+m [ ---1 ° m,




Applying conservation of energy to the swinging motion:
. mgh =1 mv?
(m1 + mz)ghf =%(m1 + mz)Vf2

— 142
ghe =3vi

o v, =200, =+/2(9.80m/s?)0.650 m)

my + my =7

—

r
v, = [w}lzig.ao m/s)0.650 m) = +896 m/s

0.0100kg

Elastic Collisions

» Both momentum and kinetic energy are conserved

* Typically have two unknowns i
« Solve the equations

m,Vy; +MyV, =MV + MLV, simultaneously
Loz 2mv = 2maz + Tmyv
o i Ty T2 tai Ty i ar Ty T

(a) Ping-Pong ball strikes bowling ball ~ (b) Bowling ball strikes Ping-Pong ball

e e
BEFORE 0 — &
n b A

Uag Cpx
2 —

B

« Incoming and outgoing velocities are very mass dependant

Before V; mass m, initially at rest

—_— =0
— X
m My
Projectile ~ Target

Vi Vs
After 4 J
X

m i X .
Elastic Collision

MyVy; +MyVy =MV + MV (1)

1 1 1 1
Emlvlzi +§m2V§i :Emlvff +Em2v§f ()

Two-dimensional Collisions

« For ageneral collision e AT
of two objects in three- 5 g Vj
dimensional space, the L “ycoso
conservation of —i N A S LRy
momentum principle wyeosd

—uysin V- -

(a) Before the collision (b) After the collision

... implies that the total momentum of the system in each
direction is conserved

M, Vi + M, Vai = M, Vit + mzvzf‘

— Use subscripts for identifying the object, initial and final,
and components

M,V + MyVop =My Vg +MyVog and

MV, +MyVy =MV, +MyVog

A Collision in Two Dimensions

Use momentum conservation to determine
o oo+ themagnitude and direction of the final
velocity of ball 1 after the collision.

\50.0- v +y

Vi)

/ 35.0° vipe= 0.63 Mis

®
vz = 0.700 mis

vog = 0.540 mis
my = 0.260 kg

()

vpiy=0.12mis 4 T .
- ~4x

vg1 = 0.900 mis
iy =0.150 kg

\m w +y
s it
Vi)
wy=012ms k___=15%]
foommte]l L,

vepe= 0.63 mis

® —_—

\)\‘ Uz =0.700 m/s Vg = Vg t Uy
) Un

“ 6 = tan ‘(#)
Urix

mlvflx + mZVfZX = mlvolx + m2V02x

— . +

vea = 0.540 mis
my = 0.260 kg

MViyy + MoV, =MV, + My,




x Component Center of Mass
(0150 kg)veyy + (0.260 kg) (0.700 mis)cos 35.0° = (0.150 kg) (0.900 mfs)sin 50.0° 4+ (0.260 kg) (0. 540 m/s)
S S e L The center of mass is a point that represents the average
Applying momentiz conservation (Equation 7.95) to the y direction we fnd that location for the total mass of a system.
'y Component x 3
(0.150 kg)vgyy -+ (0.260 kg) [ —(0.700 m/s)sin 35.0°] = (0.150 kg) [—(0.900 mis)cos 50.0°+ O i ‘
Ball 1, aer Ball 2, after Ball1, before Ball 2, before my m
These equations can be solved to obtain values for the components vy and v, cgr:n @—
[Pre=+063ms] and [vey= +012mi| Op— ‘
Xo |
U” = \l'll + i‘lj\ (Iﬂ) # = tan ‘(T“, (1b) - -
ot = MiX; +myX, . le
cm L)
v, = +0.63 m/s O, = +0.63 m/s| ml + m2 —
Center of Mass Coordinates Velocity of Center of Mass
* The coordinates of the y Aem

center of mass are

X :Zi:m')(I mlxml gy - I—A——A - _Q_

Zmiyi Xg l

AX AX
Veu = _ AX. = m,AX, +m,AX, Ax  —lem, 2
>m, Two masses on x-axis cm m +m — om _ At At
i v At m, +m
mlxl+m2x2 m,v, +m,Vv : :
Zma = Mis the total mass Xem = — Vv =M-‘p =MV =p,+p ‘
i of the system m,+m, eon m, +m, cm cm 1 2

In an isolated system, the total linear momentum does not change,
therefore the velocity of the center of mass does not change.

Example: Center of Mass Motion Motion of the Center of Mass

- |-
Vem = CONSt. In isolated system e % » The system will move as if an
K | external force were applied to a
BEFORE “ - single particle of mass M located at
M.V, + M.V the center of mass
— 171 2Y2 _ i
Vg, = ——2——2-2=0 .

After the shell explodes, the two parts
follow individual trajectories,

but the center of mass
., continues to follow the

m, +m, * J
A

AFTER o

(88kg)-1.5m/s)+ (54 kg )+ 2.5m/s)
88 kg +54 kg

shell's original
k trajectory.

cm

=0.002~0




