Minimal Python for Scientific Computing

©M.D. Johnson, September 26, 2002; Revised August 19, 2003

This document is intended to help non-programmers get started using Python for
scientific computing. I don’t assume any programming experience — but I do assume that
Python and either SciPy or NumPy are already installed on your computer.

This tutorial is designed for participative learning: type the examples into a Python
session, think about the output, and try examples as they occur to you. This is not even
close to a complete explanation of the language. References to more comprehensive
introductions and documentation are shown at the end.

Starting Python

Start an interactive Python session using one of:
Idle - Windows or Unix
Pythonwin - Windows
Python IDE - MacPython under MacOS X

Each opens an interactive Python window which shows the prompt >>>.

Using Python like a calculator

To get a feel for how Python works, try the following. The hash symbol # marks the
beginning of a comment in Python. I’ve used that here to explain some of the commands.
Don’t type in the comments.

4./3. # The default floating point type is double precision.
4/3 # Integer division truncates back to integers

4/3. # Converts type.

5*3

5.**3

5*3-2

5*(3-2)

10.2% 3 # Remainder.

x=3. # Use of variables is very natural.

y=x**3 # After assignment (=), Python doesn’t show the value.
X,y

print x,y

print X # Case sensitive.

Vinitial = 4. # Use meaningful names (begin with a letter).

X == # Logic tests return 1 (true) or 0 (false).

X == 0.

xl=y # Not equal.

X<=y

z=3+2J # Complex type.

print z

w=2.-2j # Either J or j works.

z*w

_*2 # The last computed value is in variable “ .

z.real # The first hint that Python is object-oriented: real and imag
z.imag # are “attributes” of complex numbers.

z.conjugate() # Objects can have associated functions, called “methods:”

conjugate() is a method of complex numbers.

Idle and Pythonwin have limited command-line editing abilities. Try moving to a higher
line using the up arrow, hitting return, editing, and hitting return again. With IDE you
have to cut and paste.

Data types
You’ve seen the simplest numerical types:
a=3 # Integer.
b=4. # Floating point (double precision).
c=4+2j # Complex (double precision).
type(a) # A function that shows the type. Notice that function

arguments are enclosed within parentheses.

A string consists of characters within single or double quotation marks:

a="“An”

b ='‘ex # Single or double quotation marks.

c = “parrot”

print a,b,c # Adds a space between each pair.

print a+b+c # Concatenates strings.

a[0] # You can index each character (beginning with zero).
a[1] # Notice the square brackets.

len(a) # Length.

Python has three other built-in container data types besides strings: lists, tuples, and
dictionaries. Lists are written in square brackets, with the elements separated by commas:

x=[6,7,8,9,10]

type(x)

x[0] # Lists can be indexed. Notice the square brackets.
X[1] # The first index is 0, not 1.

len(x) # Length.

x[-1] # A negative index begins from the right.
range(5) # A built-in function which produces a simple list.

range(3,9)

Objects which can be indexed (such as lists and strings) can also be accessed by slices,
which give a range of indices:

X[1:3] # The first index is included but the last is not!

X[:3] # Dropping one of the indices means “everything in that direction.”
X[3:]

X[:] # Dropping both indices means “everything.”

The way Python works with ranges takes some getting used to: x[first:last] means the
elements x[first], x[first+1],...,x[last-1]. That is, the last element is not included. This
means something like “first <= index < last.” This same behavior showed up above when
you used range.

Lists are mutable. That means that elements of the list can be changed while leaving
other elements alone.

x[0]=0

print x

Lists can be made up of anything, not just numbers.
y = [“Nobody” , “expects”]
z=["the”, “Spanish” , “Inquisition”]
y+z # What does addition mean for lists?

The second built-in container data type is the tuple. These are similar to lists, but without
the square brackets:

y=1,2.3

type(y)

print y

y[0] # Can be indexed ...

y[0:2] # ... and sliced.

z=(1,2,3) # The parentheses are optional.

print z

Unlike lists, tuples are immutable. That means that individual elements cannot be
modified.

y[0]=3 # Gives an error.
Tuples can be quickly packed and unpacked into other variables:
a,b,c=y # Unpacks y (which can be a tuple or a list) into a,b,c.
print a,b,c
a=2%a
print a
print y
y=a,b,c # Packs a,b,c into y (a tuple).

print y

Dictionaries are like lists without ordering. They are indexed by “key” rather than
position. They are denoted with braces:

review = { “Inquisition” : “Funny” , “Parrot” : “Hysterical”}

print review[0] # Not indexed by number ...

print review[‘Inquisition’] # ... but by key.

print review[‘Parrot”]
Dictionaries are a very convenient way to organize large collections of data, process
them, and keep track of everything along the way. You won’t usually use them directly in
numerical work, but sometimes they are very efficient. (They are used in SciPy to
implement sparse matrix operations). Since the entries can be any object (including
functions), dictionaries can be remarkably powerful.

Scientific and Numerical Python

The Python core doesn’t have the basic data types and functions most needed for
scientific programming. Many are available in an add-on module called Numerical
Python (or NumPy). This in turn is part of a more comprehensive module called SciPy
which includes NumPy plus much more. As of this writing SciPy is only available on
Windows and Unix machines. I assume you have already installed one of these.

To get access to these features they need to be imported. Once per session type:

from scipy import * # If SciPy is installed; or

from Numeric import * # If NumPy (but not SciPy) is installed.
You will also need to do this in any module (see below) that needs these features.

NumPy defines a new container data type which is important for scientific programming:
the multiarray, or, for short, the array. Arrays are similar to lists but have properties
closer to matrices than to strings. Define an array using the function array() with
(usually) one argument:

a =array((1,2,3))

type(a)

a

print a

b =array([1,2,3]) # Brackets or parentheses are both OK.
print b

c=array(1,2,3) # But you need one or the other.

al2 # Oops ... integer arithmetic

a = array((1.,2,3)) # Chooses the “bigger” type automatically.
al2

a = array((1,2,3),Float) # Or set the type with an optional second argument.
print a

b = array([4,5,6])

a+b # Add like matrices.

a=array([[1,2],[3,4]]) # 2 by 2 array.
print a

Many of the imported numerical functions are “universal functions,” or ufunecs, which
means that they act element-by-element on arrays.
a =arange(10) # “array range”’: more efficient than range().

print a

a**2 # Squares each element.

a* (pi/9) # pi is part of NumPy.

sin(a) # Takes the sine of each element of a.
sin(2+3j) # Works with any data type.

Elemental operations are very useful, but make sure that you don’t erroneously expect
ordinary matrix multiplication.
a=array((1,2))

print a*2 # Does what you’d expect.
b = array((4,5))
print a*b # Elemental multiplication

What you’d expect.

print dot(a,b)

a =array(((1,2),(3,4)))
print a

print b

print matrixmultiply(a,b) # What you’d expect
print a*b

This last operation needs explanation. When two arrays don’t have compatible shapes,
Python tries to broadcast the smaller to the larger. Sometimes that’s easy to understand:
a = array(((1,2),(3,4)))
print a+2
Here the scalar 2 is added to each element of the matrix. Now try
b = array((4,5))
print a+b
You might be able to see what happened. The first element of b was added to the first
column of a, and the second to the second. The same thing happens with a*b.

Programming

You won’t use the interactive window very much. Instead you will write programs in
files and then run the programs. A collection of Python code saved in a file is called a
module. The Python interfaces have special editors to make this easier. To begin a new
module, click File and then New (or New Window). (Using Pythonwin, you will then
need to choose “Python Script.”) In each case this starts an editor. Type in some very
simple Python code, such as:

t=2
y=t**2
print y

You will of course need to save your modules. Be careful where you put them. Don’t use
the default location (somewhere down inside the Python directory structure). Use a
directory of your own. And use reasonable names (not “Scriptl”). The details of how to
save and run depend on which interface you’re using:

¢ Idle: Save from the File menu. You must explicitly type a suffix .py when you
name the module (e.g., “first.py”’). Then run by using “Edit->Run Script.”

* Pythonwin: You can save either from the File menu or by clicking on the disk
icon in the tool bar. Do not explicitly add the suffix .py (e.g., just give it the
name “first”). Once it’s saved you can run it using “File->Run,” or by clicking
the little running person icon in the tool bar. These bring up a dialogue box.
Click OK and the code runs. (Holding down the shift button while clicking
skips the dialogue box.)

* IDE: Save from the File menu. Certain things work better if you add the suffix
.py to the name. Run your code by clicking “Run all” on the editor window, or
“Python->Run window” from the menu bar.

Change your code and run it again. (For instance, make t=4.) With Idle you need to
explicitly save before running again. With Pythonwin the act of running automatically
saves the modified version. With IDLE saving is unnecessary (until you’re finished!).

Python will complain if you try to run a module containing a syntax error. For example,
change the middle line above to y=t***2 and try to run.

The editors can help you find syntax errors. Using Idle, select “File->Check Module.”
This will highlight the first error it finds. Using Pythonwin, select “File->Check” or click
the check mark in the tool bar. The cursor moves to the point where a syntax error is
found. With IDE, click the little triangle just below the upper right corner in the editor’s
window, and then select “Modularize.” With any of these, once you fix the error,
checking again will find the next error (if any). [Below you will see that editors also help
catch syntax errors by adding automatic indentation and (maybe) colors. For example, if
you notice that the indentation is wrong in some block, you probably omitted a colon.]

To get all the syntax bugs out of your program: make a change and then check or run. Do
it again; and again; and again ... until it’s perfect.

Control statements

Python has for and while loops, and if statements. The syntax is peculiar: Python uses
indentation to determine how far a block extends instead of “end if” or “end for”
statements. Make and run a module with the following:

X=5

if x<4 or x>27: Notice the colon!
print “Bring”
print “us” This line and the above have identical indentation.
print “finished” Aligned with “if” so outside the block.
Change the first line to x=3 and run again.
The comparison operators most often used in if statements are ==, >, >=, <, <= I=,
Multiple tests use elif (meaning “else if”’) and else constructs:
x=5
if x<4 or x>27:
print “Bring”
elif x<7: # Notice the colon
print “us”
elif x<12:
print “a@”
else:

print “shrubbery”
Can end a block with a blank line.
Try changing x to 5, 3, 8, 20, and 30. Make sure you understand the results.

All Python blocks have the same basic structure, a line ending with a colon followed by a
block of indented code. The amount of indentation is arbitrary, but be careful to remain
consistent or you’ll get an error.

The basic loop is the for loop:
forkin[1,2,3]: # Notice the keyword “in” and the colon.
print “k=",k

In the above example the iteration is over the members of a list. In fact, a for loop can
iterate over any sequence (a list, tuple, string, or array).
forkin [‘I", “feel” , “fine”]:

print k
forkin 1,2,3: # A tuple
print k
for k in “swallow”: # A string
print k
for k in arange(5): # An array. To use this in a module you need
print k # to put this as the first line of the module:
from Numeric import *
for k in range(5): # A list

print k

The last two examples are the most important for numerical programming. They show
quick ways to iterate over a sequence of numbers. Both arange() and range() permit
arbitrary starting points, ending points, and stride. Moreover, in arange() these don’t
have to be integers:

print range(-10,10,2)

for x in arange(-pi/2,pi/2,pi/4):

print x/pi

Notice again that the upper limit in the range is not included.

Another type of loop is provided by while:

a,b=0,1
while b<10: # Notice the colon.
print a,b
a,b =b,a+b # Cute multiple assignment.

Sometimes within loops you have if tests and, depending on the outcome, want to break
out of the loop or instead continue the next iteration. The break statement jumps out of
the innermost enclosing loop, and the continue statement continues with the next
iteration of the loop.

Functions

We want to write collections of code which can be called with different parameters or
arguments, and produce results. In Python these objects are called functions, and they are
created with the def keyword. Put the following in a module:
def square(x): # Notice the colon
y = X**2 # and the indentation
returny
def f(x):
y = square(x)
y =y-4
returny
print square(4)
print f(4)
print square(1)
print f(1)

Now run the module. I’'m sure you see the point. The return keyword does just what it
says: it determines what is returned as the function’s value, and causes the return.

Now change the last four lines to the following, and run again.
y=4.
print square(y)
print y

Notice that the printed Y is still 4; it was not changed by calling square. Why? Because
the variable y in function square is local to that function, and can’t be seen from outside.
This is a very important benefit of using functions. You can use whatever variable name
you like inside and they won’t conflict with names on the outside. (This is close to the
truth; a more careful explanation is in the section “Objects” below.)

Functions have a number of oher features (e.g., keywords and default arguments) that are
explained in the Python documentation.

Modules

A file containing a collection of function definitions (and also possibly some other code
not within a function definition) is known as a module. Your programs above were
simple modules. Most of Python’s features are kept in various modules. You get access to
them using the import command. There are three variants to this command. If you type:
from scipy import *
then you get access to all (well, most) of the functions within SciPy (such as sin, cos,
etc.). If instead you type:
import scipy
then you have imported the module called SciPy, but have not imported its function
definitions. You could then access the latter with the dotted form:
scipy.sin(x)
The third form of this command is to import only certain functions. For example,
from scipy import sin,cos
brings in the two trig functions and nothing else.

To see what objects you have defined (by importing or any other way), use the function
dir(). If you have imported a module (using the form import scipy) you can see its
associated methods using dir(scipy). (IDE has a nice alternative: click the little triangle
just below the upper right corner and select “Browse namespace.”) To eliminate some
object or binding use del(x). If you’ve edited a module, re-import it using reload().

When you write simple code it is easiest to keep everything in one file, and simply go
through the cycle of edit and run as above. But with larger projects it is useful to separate
components into different modules, and import them as necessary.

One thing to bear in mind is that Python has a certain path within which it searches for
modules. This is probably Python’s worst-implemented feature. The path includes some
installation directories, any you’ve added by hand, and also the “current directory.”
MacPython adds a simple feature which works around this. Select a folder using the
menu item Python->Preferences->Set Script Folder. MacPython will automatically search
here for modules when you issue the import command. Pythonwin takes advantage of the
notion of the current directory: if you open one of your saved files from some directory or
save an edited file to a directory, the directory you use becomes the current directory.
Unfortunately, Idle and IDE don’t change the current directory for you.

When you set up Python on a machine of your own, you may want to change the default
path. On any platform you can create files with suffix .pth in Python’s root directory (see
the Python documentation).

If you need to, you can see and modify the search path while running Python, as follows.

import sys # Import the module “sys.”
sys.path # Shows the search path.
sys.path.append(“C:/my directory”)

sys.path

Here append() is a method of sys.path which appends its argument to the search path.
You can also change the current directory by hand:

import os

os.chdir(“C:/my directory”)

A complete program

The simplest structure for a scientific or numerical code puts any needed imports at the
top, followed by function definitions and then the main executable code. For example:

Example of a complete program.
from scipy import * # If SciPy is installed.
#from Numeric import * # Otherwise
def square(x):
“‘Squares the argument x” # A doc string (see below).
return x**2

Main routine
days=arange(7)+1
print square(days)

This example introduces another important idea: fill your code with comments! Who will
read them? You will — next week, or next year, when you come back to this program. If
your code has inadequate comments you will have a long and unpleasant time trying to
remember how it works. A few minutes adding comments now saves hours later.

Getting help

Python has a few forms of interactive help. The above example introduces the doc string.
This is the string in the line following the def. If you have been using Pythonwin or Idle,
you have seen doc strings frequently. For example, in the interactive window type:

sin(
The explanation you see is a doc-string. Also try (this works in IDE too):

sin.__doc___ # Double underscores on each side.

1m0

The use of doc strings lets you get some help while running Python. For instance,
suppose you’re hoping for some kind of modulus function. If you’ve imported everything
within SciPy or NumPy, try dir() or (with IDE) browse the namespace. You’ll see a
function fmod listed. Then you can examine its doc string as above.

A more elaborate help facility is provided by the module pydoc:

import pydoc

pydoc.help()
This opens a simple interactive help system. Yet another help facility is provided by
SciPy, which has a function help().

Objects

Python is an object-oriented language like C++ or Java. Object orientation, and
particularly the ability to define classes, gives the language tremendous flexibility and
power. It’s not particularly helpful for most numerical programming. But some aspects of
Python are confusing until you recognize its object orientation.

To begin with, everything in Python is an object. Python objects can have attributes and
methods, which are subsidiary variables and functions. These are accessed using a dot
notation. We looked at an example earlier:

z=2+8J

z.real # An attribute of complex numbers.
z.imag # Another attribute.

z.conjugate() # A method of complex numbers.

The same dot notation is used for functions that are contained within modules. If you
import an entire module (such as import scipy) then you can access its functions using
the syntax scipy.sin(3). Thus you can view sin as a method of scipy.

You can make interesting objects with arbitrary attributes and methods using classes.
That’s a big topic which I won’t discuss further here.

Everything in Python is an object, and every object can have multiple names bound to it.
You can see what this means using the id() function. In the interactive window type:

x=[1,2,3] # Creates an object (a list) and binds the name X to the object.

id(x) # The location of the corresponding object in memory.

y=X

id(y)
Notice that X and y have the same id. That means that they are two different names bound
to the same object. You can think of y as an alias of X, or as a pointer to the same
location. Change an entry in one and you change the other as well.

y[0]=4

print x

print y

11

Here we see that an assignment with an index or slice on the left-hand side modifies a
mutable object. It does not create a new object, nor does it bind a name to a different
object. However if you do an assignment without indices or sections, you create a new
object (or change a binding):

y =1[56,7]

id(x),id(y)

print x

print y
Here we created a new object (another list) and bound y to it.

In summary, an assignment of the form
y=...
binds the name Y to the object on the right-hand side. (If this object didn’t previously
exist, this assignment also creates the object.) But an assignment of the form
y[1:2]=...,
which involves indices or slices on the left, modifies the contents of the mutable object
without changing the binding.

If you really want y to be a separate object whose initial value is equal to X, then you can
use the copy() method for arrays:

y = x.copy()

print id(x),id(y)

y[0]=27

print x,y
To copy a list use y=x[:]. Or for any type of object use y=copy.copy(x).

None of this matters for immutable objects. Consider:

x=7

y=X

id(x),id(y)

print x,y

y=3

id(x),id(y)

print x,y
Again the assignment y=x binds Yy to the same object as x. But because Yy is immutable,
the only way to change it is a new assignment (such as y=3). This rebinds y rather than
modifying it. You can’t modify y without rebinding it, so no change to y can change x.

Earlier I said that variables within a function are local to that function. In fact, that’s only
true if the variable is assigned a value within the function (e.g., z=5). If you do not assign
a value within the function, then Python looks in the surrounding module for a variable
with the same name, and uses that. If you define z=4 in the module’s main part, then
print z in an included function will show 4. Thus an unassigned variable z in a function
is bound to the same object as z in its enclosing module. But if within the function you
assign z=5 then Python rebinds z to be a new local object. (You can override this with

17

the declaration global z within the function.) Similarly, within a function f(x) the
argument X is initially bound to the external argument. An assignment of the form x=2
breaks the binding and produces a new local variable X. And assignments of the form
X[1]=2 or z[1]=2 modify the external objects instead of making new local variables.
These rather technical ideas fall under the heading of namespace and scope. More
complete explanations are in the documentation (especially the Python Tutorial).

Input and output

You’ve already learned the simplest way to get output: use the print command. You can
get more control over your output using the % operator. For instance:

print ‘Pi is %5.3f (to three decimal places)’ % pi

print ‘Pi is %5.3f and pi squared is %5.3f % (pi,pi**2)
The formats are taken from C. Here f is the format for floating-point numbers. Use %s
for strings and a form like %3d for integers. (Using %f and %d gives a default spacing.)

Sometimes it’s convenient to get interactive input to a routine. One way:
x = raw_input(“Enter a number:”) # Prompts for value, assigns it to X.

Finally I’ll briefly describe how read from and write to files. Here I’ll assume that the file
is in the current directory. (Otherwise you can use an explicit path “C:/mydir/myfile”.)
The steps are: open the file, read/write using methods, and then close using a method.

f=open(‘myfile’,’'w’) # Write access to a file myfile
f.write(‘Heavenly Choir\n’) # Includes newline.

f.write(‘pi is %5.3f and pisquare is %5.3\n’ % (pi, pi**2))
f.close() # When you’re finished, close it.

To read from an existing file:
f = open(‘myfile’,’r’)
f.read() # Gets the whole thing

f.readline() # Instead, read one line.

If you want to save a Python object to a file to be read back into Python later, you should
learn about the pickle command.

Plotting

There are many ways to generate plots from your Python results. Here I’ll mention
several. One way is to write data to a file and then use an external plotting program. If
you have a package that you like (Origin, Excel, etc.), use it. Here I’ll briefly describe
how to plot Python results using gnuplot, a freeware program available for practically
any platform. First, some code to write data to a file (here, a Unix-style path):

1

from Numeric import *

f=open(‘/Users/Jojo/Python/booplot’,'w’)

for x in arange(0,pi,pi/100): # Non-integer limits and stride
y = sin(x)
f.write("%8.5f %8.5A\n’ % (X,y))

f.close()

Now start up gnuplot. This gives an interactive facility. Type at the prompt as shown.
gnuplot> cd ‘/Users/Jojo/Python’
gnuplot> plot ‘booplot” with | (lower-case L, not numeral one)
gnuplot> set title 'My lovely plot’
gnuplot> Unset key
gnuplot> replot

The last three lines are an example of gnuplot’s many plotting options.

Here is another example of writing to a file which adds a few wrinkles:
from scipy import *
X = arange(6)

y = X**2

name = raw_input(‘Enter filename:’) # Pick name interactively

name = “C:\\mdj\\"+name # File is in directory C:\mdj

f=open(name,’'w’)

for x in arange(len(x)): # Loop over (x,y) pairs
f.write(*%5.3 %5.37\n” % (x[1],y[l]))

f.close()

You can also do your plotting entirely within python. I will describe three approaches.
The first again uses Gnuplot, but calls it from within Python. I have used this under
MacPython, but haven’t tried it under Windows. The second two use plotting packages
built into SciPy. These work fine under Windows.

If you have installed Gnuplot you can download and install package gnuplot.py into
your python directories. (Using this with MacPython requires that you also download an
application called AquaTerm.) Here is an example of its use:

from Numeric import *
import Gnuplot,Gnuplot.funcutils
x=arange(0,pi,pi/10.)

y1=sin(x)

y2=cos(X)

g=Gnuplot.Gnuplot(debug=1)

g(‘set terminal aqua’) # Needed with MacPython

g.title(‘My beautiful plot’) # optional

g(‘set data style linespoints’) # can give gnuplot an arbitrary command

d1=Gnuplot.Data(x,y1,with="line 4’ title="sin(x)’)
d2=Gnuplot.Data(x,y2,title="cos(x)’)
g.plot(g1,92)

14

The gnuplot.py installation includes a file demo.py which contains useful examples.
Please examine it.

The other two plot packages that I will describe are part of SciPy: plt and gplt. (I haven’t
used a third package in SciPy, xplt,) First look at plt. A note of caution: this works well
with Pythonwin but crashes Idle. Once per session (or once per module) you need to
import two packages (gui_thread and plt). Then use method plt.plot:

from scipy import *

import gui_thread

from scipy import plt # Didn’t come in with the *
x=arange(0,pi,pi/100)

y=sin(x) # Elemental operation
plt.plot(x,y)

plt.title(“My lovely plot”)

Here are examples using package gplt.
Put two curves on one figure
from scipy import *
import gui_thread

from scipy import gplt # Didn’t come in with the *
x=arange(0,pi,pi/100)

y1=sin(x) # Elemental operation
y2=cos(X)

gplt.plot(x,y1)
gplt.hold(‘on’)

gplt.plot(x,y2)

Alternatively you could replace the last three lines by:
gplt.plot(x,y1,x,y2)

Put two curves on separate figures:
gplt.figure()

gplt.plot(x,y1)

gplt.figure()

gplt.plot(x,y2)

Error messages
You have been getting two different kinds of error messages: syntax errors, and run-
time exceptions. A syntax error means you have typed some illegal Python code. An

exception means that execution caused an error (for instance, division by zero). It can
take a while to learn what error messages mean.

15

What next?

Now you should look through more complete Python documentation. Many general
introductions and reference materials are available at www.python.org. I like the tutorial
written by Python’s creator, Guido van Rossum. See www.python.org/doc/current.

A rapid introduction to many of Python’s more advanced features is Dive into Python,
found at diveintopython.org.

The numerical package NumPy is documented at www.numpy.org. Likewise the
scientific package SciPy is described at www.scipy.org.

There are a number of books available. I enjoyed Python: The Complete Reference, by
Martin C. Brown (Osborne/McGraw-Hill).

1A

